These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 265587)

  • 41. The role of substrate supply in the regulation of cholesterol biosynthesis in rat hepatocytes.
    Pullinger CR; Gibbons GF
    Biochem J; 1983 Mar; 210(3):625-32. PubMed ID: 6870798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BCG-immunotherapy of L2C guinea pig leukemia.
    Dopatka HD; Majer M; Freudenstein H; Hennessen W
    Dev Biol Stand; 1977 Apr 13-15; 38():355-8. PubMed ID: 608523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dietary fat-dependent changes in hepatic cholesterogenesis and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase in fasted-refed rats.
    Ide T; Tanaka T; Sugano M
    J Nutr; 1979 May; 109(5):807-18. PubMed ID: 438898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3-Hydroxy-3-methylglutaryl coenzyme A reductase in outer versus inner cortices of the guinea pig adrenal: effects of adrenocorticotropin and dexamethasone.
    Black VH; Brody RI; Martin KO
    Endocrinology; 1988 Jan; 122(1):296-305. PubMed ID: 2826111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase in zones of the adrenal cortex.
    Kubo M; Strott CA
    Endocrinology; 1987 Jan; 120(1):214-21. PubMed ID: 3023027
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid proteasomal elimination of 3-hydroxy-3-methylglutaryl-CoA reductase by interferon-γ in primary macrophages requires endogenous 25-hydroxycholesterol synthesis.
    Lu H; Talbot S; Robertson KA; Watterson S; Forster T; Roy D; Ghazal P
    Steroids; 2015 Jul; 99(Pt B):219-29. PubMed ID: 25759117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cholesterol is a critical cellular component for T-lymphocyte cytotoxicity.
    Heiniger HJ; Brunner KT; Cerottini JC
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5683-7. PubMed ID: 310124
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cholesterol synthesis in polyclonally activated cytotoxic lymphocytes and its requirement for differentiation and proliferation.
    Heiniger HJ; Marshall JD
    Proc Natl Acad Sci U S A; 1982 Jun; 79(12):3823-7. PubMed ID: 6954525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3-Hydroxy-3-methylglutaryl coenzyme A reductase in anencephalic and normal human fetal liver.
    Carr BR; Rainey WE; Mason JI
    J Clin Invest; 1985 Nov; 76(5):1946-9. PubMed ID: 2997298
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stimulation of sterol and DNA synthesis in leukemic blood cells by low concentrations of phytohemagglutinin.
    Chen HW; Heiniger HJ; Kandutsch AA
    Exp Cell Res; 1977 Oct; 109(2):253-62. PubMed ID: 913491
    [No Abstract]   [Full Text] [Related]  

  • 51. The pathologic characteristics of leukostasis and leukemic nodules occurring in the central nervous system of guinea pigs with L2C/NB leukemia.
    Nadel EM; Nelson JS
    J Neuropathol Exp Neurol; 1976 Jan; 35(1):75-89. PubMed ID: 1245856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of the oncornavirus particles in the plasma of guinea pigs with L2C leukemia.
    Michalides R; Scholom J; Pearson J; Perk K; Dahlberg J
    J Virol; 1976 Jun; 18(3):1120-30. PubMed ID: 58078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Morphological evidence for the presence of the endogenous guinea-pig retravirus in the lymphoblasts of L2C leukemia.
    Perk K; Dahlberg JE
    Experientia; 1979 Jan; 35(1):104-5. PubMed ID: 283931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of cholesterol biosynthesis in enucleated cells.
    Cavenee WK; Chen HW; Kandutsch AA
    J Biol Chem; 1981 Mar; 256(6):2675-81. PubMed ID: 7204371
    [No Abstract]   [Full Text] [Related]  

  • 55. Mutant lines of guinea pig L2C leukemia. II. Comparative cytogenetic studies and banding analyses of normal and leukemic karyotypes.
    Whang-Peng J; Lee EC; Forni G; Green I
    J Natl Cancer Inst; 1976 Oct; 57(4):897-905. PubMed ID: 1034020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chain length dependent modification of lipid organization by low levels of 25-hydroxycholesterol and 25-hydroxycholecalciferol. A laser Raman study.
    Verma SP; Philippot JR; Wallach DF
    Biochemistry; 1983 Sep; 22(19):4587-91. PubMed ID: 6626516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transvascular migration of L2C leukemic cells studied in the liver of the guinea pig.
    Azzarelli B; Muller J; Mirkin LD; Goheen MP
    Virchows Arch A Pathol Anat Histopathol; 1985; 406(4):425-40. PubMed ID: 3925618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction between lymphocytes and lecithin-cholesterol vesicles.
    Dresdner G; Ehrenberg A; Hammarström L; Smith E
    Acta Chem Scand B; 1979; 33(8):599. PubMed ID: 532502
    [No Abstract]   [Full Text] [Related]  

  • 59. Genealogy of the L2C leukemia "lines" in the strain 2 guinea pig.
    Nadel EM
    J Natl Cancer Inst; 1977 May; 58(5):1183. PubMed ID: 853521
    [No Abstract]   [Full Text] [Related]  

  • 60. Cell-substratum and cell-monolayer adhesion are dependent upon cellular cholesterol biosynthesis.
    Cavenee WK; Chen HW; Kandutsch AA
    Exp Cell Res; 1981 Jan; 131(1):31-40. PubMed ID: 7447988
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.