These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26558749)

  • 21. How age influences unravelling morphology of annular lamellae - a study of interfibre cohesivity in the lumbar disc.
    Schollum ML; Robertson PA; Broom ND
    J Anat; 2010 Mar; 216(3):310-9. PubMed ID: 20447247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single lamellar mechanics of the human lumbar anulus fibrosus.
    Holzapfel GA; Schulze-Bauer CA; Feigl G; Regitnig P
    Biomech Model Mechanobiol; 2005 Mar; 3(3):125-40. PubMed ID: 15778871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Staying connected: structural integration at the intervertebral disc-vertebra interface of human lumbar spines.
    Brown S; Rodrigues S; Sharp C; Wade K; Broom N; McCall IW; Roberts S
    Eur Spine J; 2017 Jan; 26(1):248-258. PubMed ID: 27084189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus.
    Skaggs DL; Weidenbaum M; Iatridis JC; Ratcliffe A; Mow VC
    Spine (Phila Pa 1976); 1994 Jun; 19(12):1310-9. PubMed ID: 8066509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension.
    Turner KG; Ahmed N; Santerre JP; Kandel RA
    Spine J; 2014 Mar; 14(3):424-34. PubMed ID: 24291406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs.
    Chuang SY; Odono RM; Hedman TP
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):14-20. PubMed ID: 17005305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How maturity influences annulus-endplate integration in the ovine intervertebral disc: a micro- and ultra-structural study.
    Rodrigues SA; Thambyah A; Broom ND
    J Anat; 2017 Jan; 230(1):152-164. PubMed ID: 27535364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of MRI contrast in the annulus fibrosus of the intervertebral disc.
    Wright AC; Yoder JH; Vresilovic EJ; Elliott DM
    MAGMA; 2016 Aug; 29(4):711-22. PubMed ID: 26755061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ISSLS PRIZE IN BASIC SCIENCE 2020: Beyond microstructure-circumferential specialization within the lumbar intervertebral disc annulus extends to collagen nanostructure, with counterintuitive relationships to macroscale material properties.
    Herod TW; Veres SP
    Eur Spine J; 2020 Apr; 29(4):670-685. PubMed ID: 31768841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Image-based tissue engineering of a total intervertebral disc implant for restoration of function to the rat lumbar spine.
    Bowles RD; Gebhard HH; Dyke JP; Ballon DJ; Tomasino A; Cunningham ME; Härtl R; Bonassar LJ
    NMR Biomed; 2012 Mar; 25(3):443-51. PubMed ID: 21387440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of animals used in disc research to human lumbar disc geometry.
    O'Connell GD; Vresilovic EJ; Elliott DM
    Spine (Phila Pa 1976); 2007 Feb; 32(3):328-33. PubMed ID: 17268264
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Iu J; Massicotte E; Li SQ; Hurtig MB; Toyserkani E; Santerre JP; Kandel RA
    Tissue Eng Part A; 2017 Sep; 23(17-18):1001-1010. PubMed ID: 28486045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model?
    Wilke HJ; Heuer F; Neidlinger-Wilke C; Claes L
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S433-8. PubMed ID: 16868784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The transpedicular approach as an alternative route for intervertebral disc regeneration.
    Vadalà G; Russo F; Pattappa G; Schiuma D; Peroglio M; Benneker LM; Grad S; Alini M; Denaro V
    Spine (Phila Pa 1976); 2013 Mar; 38(6):E319-24. PubMed ID: 23324932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rat intervertebral disc health during hindlimb unloading: brief ambulation with or without vibration.
    Holguin N; Judex S
    Aviat Space Environ Med; 2010 Dec; 81(12):1078-84. PubMed ID: 21197851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tensile behaviour of individual fibre bundles in the human lumbar anulus fibrosus.
    Pham DT; Shapter JG; Costi JJ
    J Biomech; 2018 Jan; 67():24-31. PubMed ID: 29221904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons.
    Ghodbane SA; Dunn MG
    J Biomed Mater Res A; 2016 Nov; 104(11):2685-92. PubMed ID: 27325579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validity and reliability of computerized measurement of lumbar intervertebral disc height and volume from magnetic resonance images.
    Neubert A; Fripp J; Engstrom C; Gal Y; Crozier S; Kingsley MI
    Spine J; 2014 Nov; 14(11):2773-81. PubMed ID: 24929060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.