These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26558896)

  • 1. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development.
    Rowbottom R; Carver S; Barmuta LA; Weinstein P; Foo D; Allen GR
    PLoS One; 2015; 10(11):e0142472. PubMed ID: 26558896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula.
    Leisnham PT; Sandoval-Mohapatra S
    Int J Environ Res Public Health; 2011 Aug; 8(8):3099-113. PubMed ID: 21909293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of predators, competitors, and secondary salinization in structuring mosquito (Diptera: Culicidae) assemblages in ephemeral water bodies of the Wheatbelt of Western Australia.
    Carver S; Spafford H; Storey A; Weinstein P
    Environ Entomol; 2010 Jun; 39(3):798-810. PubMed ID: 20550792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between mosquito larvae and species that share the same trophic level.
    Blaustein L; Chase JM
    Annu Rev Entomol; 2007; 52():489-507. PubMed ID: 16978142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of open marsh water management on numbers of larval salt marsh mosquitoes.
    James-Pirri MJ; Ginsberg HS; Erwin RM; Taylor J
    J Med Entomol; 2009 Nov; 46(6):1392-9. PubMed ID: 19960686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mosquito distribution in a saltmarsh: determinants of eggs in a variable environment.
    Rowbottom R; Carver S; Barmuta LA; Weinstein P; Allen GR
    J Vector Ecol; 2017 Jun; 42(1):161-170. PubMed ID: 28504426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of Aedes vigilax larval population densities and associated vegetation categories in a coastal wetland, Northern Territory, Australia.
    Jacups SP; Kurucz N; Whelan PI; Carter JM
    J Vector Ecol; 2009 Dec; 34(2):311-6. PubMed ID: 20836834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and spatial habitat preferences and biotic interactions between mosquito larvae and antagonistic crustaceans in the field.
    Kroeger I; Liess M; Duquesne S
    J Vector Ecol; 2014 Jun; 39(1):103-11. PubMed ID: 24820562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining meteorological drivers of salt marsh mosquito peaks in tropical northern Australia.
    Jacups SP; Carter J; Kurucz N; McDonnell J; Whelan PI
    J Vector Ecol; 2015 Dec; 40(2):277-81. PubMed ID: 26611962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inorganic nitrogen enrichment on mosquitoes (Diptera: Culicidae) and the associated aquatic community in constructed treatment wetlands.
    Sanford MR; Chan K; Walton WE
    J Med Entomol; 2005 Sep; 42(5):766-76. PubMed ID: 16363159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design.
    Rochlin I; Iwanejko T; Dempsey ME; Ninivaggi DV
    Int J Health Geogr; 2009 Jun; 8():35. PubMed ID: 19549297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of mosquito larvae in various breeding sites in National Zoo Malaysia.
    Muhammad-Aidil R; Imelda A; Jeffery J; Ngui R; Wan Yusoff WS; Aziz S; Lim YA; Rohela M
    Trop Biomed; 2015 Mar; 32(1):183-6. PubMed ID: 25801269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity to mosquito breeding habitat and Ross River virus risk in the Peel region of Western Australia.
    Jardine A; Neville PJ; Lindsay MD
    Vector Borne Zoonotic Dis; 2015 Feb; 15(2):141-6. PubMed ID: 25700045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of a pesticide and larval competition on life history traits of Culex pipiens.
    Muturi EJ; Costanzo K; Kesavaraju B; Lampman R; Alto BW
    Acta Trop; 2010 Nov; 116(2):141-6. PubMed ID: 20637716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable control of mosquito larvae in the field by the combined actions of the biological insecticide Bti and natural competitors.
    Kroeger I; Liess M; Dziock F; Duquesne S
    J Vector Ecol; 2013 Jun; 38(1):82-9. PubMed ID: 23701611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence mechanisms at multiple scales in mosquito assemblages.
    Laporta GZ; Sallum MA
    BMC Ecol; 2014 Nov; 14():30. PubMed ID: 25384802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.
    Ohba SY; Matsuo T; Takagi M
    Med Vet Entomol; 2013 Mar; 27(1):96-103. PubMed ID: 23167444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crustacean biodiversity as an important factor for mosquito larval control.
    Kroeger I; Duquesne S; Liess M
    J Vector Ecol; 2013 Dec; 38(2):390-400. PubMed ID: 24581370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardized Laboratory Feeding of Larval Aedes japonicus japonicus (Diptera: Culicidae).
    Bock F; Kuch U; Pfenninger M; Müller R
    J Insect Sci; 2015; 15(1):. PubMed ID: 26452522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation.
    Medlock JM; Vaux AG
    Parasit Vectors; 2015 Mar; 8():142. PubMed ID: 25889666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.