BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 26559119)

  • 1. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.
    LoPachin RM; Gavin T
    Free Radic Res; 2016; 50(2):195-205. PubMed ID: 26559119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of soft and hard electrophile toxicities.
    LoPachin RM; Geohagen BC; Nordstroem LU
    Toxicology; 2019 Apr; 418():62-69. PubMed ID: 30826385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of aldehyde toxicity: a chemical perspective.
    LoPachin RM; Gavin T
    Chem Res Toxicol; 2014 Jul; 27(7):1081-91. PubMed ID: 24911545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.
    Lopachin RM; Gavin T; Decaprio A; Barber DS
    Chem Res Toxicol; 2012 Feb; 25(2):239-51. PubMed ID: 22053936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptosomal toxicity and nucleophilic targets of 4-hydroxy-2-nonenal.
    Lopachin RM; Geohagen BC; Gavin T
    Toxicol Sci; 2009 Jan; 107(1):171-81. PubMed ID: 18996889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants.
    LoPachin RM; Barber DS
    Toxicol Sci; 2006 Dec; 94(2):240-55. PubMed ID: 16880199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation.
    LoPachin RM; Gavin T; Petersen DR; Barber DS
    Chem Res Toxicol; 2009 Sep; 22(9):1499-508. PubMed ID: 19610654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.
    Zhang J; Wang C; Ji L; Liu W
    Chem Res Toxicol; 2016 May; 29(5):841-50. PubMed ID: 26929981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry.
    LoPachin RM; Gavin T
    Environ Health Perspect; 2012 Dec; 120(12):1650-7. PubMed ID: 23060388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Redox Signaling and Reactive Sulfur Species to Regulate Electrophilic Stress].
    Kanda H; Kumagai Y
    Yakugaku Zasshi; 2020; 140(9):1119-1128. PubMed ID: 32879244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotoxic mechanisms of electrophilic type-2 alkenes: soft soft interactions described by quantum mechanical parameters.
    LoPachin RM; Gavin T; Geohagen BC; Das S
    Toxicol Sci; 2007 Aug; 98(2):561-70. PubMed ID: 17519395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems analysis of protein modification and cellular responses induced by electrophile stress.
    Jacobs AT; Marnett LJ
    Acc Chem Res; 2010 May; 43(5):673-83. PubMed ID: 20218676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the Reactivity of Trapping Reagents toward Electrophiles: Cysteine Derivatives Can Be Bifunctional Trapping Reagents.
    Inoue K; Fukuda K; Yoshimura T; Kusano K
    Chem Res Toxicol; 2015 Aug; 28(8):1546-55. PubMed ID: 26172216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liabilities Associated with the Formation of "Hard" Electrophiles in Reactive Metabolite Trapping Screens.
    Kalgutkar AS
    Chem Res Toxicol; 2017 Jan; 30(1):220-238. PubMed ID: 27802597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivation of S-(2,2-dihalo-1,1-difluoroethyl)-L-cysteines and S-(trihalovinyl)-L-cysteines by cysteine S-conjugate beta-lyase: indications for formation of both thionoacylating species and thiiranes as reactive intermediates.
    Commandeur JN; King LJ; Koymans L; Vermeulen NP
    Chem Res Toxicol; 1996; 9(7):1092-102. PubMed ID: 8902263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophile versus oxidant modification of cysteine residues: Kinetics as a key driver of protein modification.
    Sauerland MB; Davies MJ
    Arch Biochem Biophys; 2022 Sep; 727():109344. PubMed ID: 35777524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent thiol adducts arising from reactive intermediates of cocaine biotransformation.
    Schneider KJ; DeCaprio AP
    Chem Res Toxicol; 2013 Nov; 26(11):1755-64. PubMed ID: 24112049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity.
    Pals JA; Wagner ED; Plewa MJ; Xia M; Attene-Ramos MS
    J Environ Sci (China); 2017 Aug; 58():224-230. PubMed ID: 28774613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of protein phosphatase 2A activity by selective electrophile alkylation damage.
    Codreanu SG; Adams DG; Dawson ES; Wadzinski BE; Liebler DC
    Biochemistry; 2006 Aug; 45(33):10020-9. PubMed ID: 16906760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.