These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 26559120)
1. Infrared spectroscopic and chemometric approach for identifying binding medium in Sukias mansion's wall paintings. Haghighi Z; Karimy AH; Karami F; Bagheri Garmarudi A; Khanmohammadi M Nat Prod Res; 2019 Apr; 33(7):1052-1060. PubMed ID: 26559120 [TBL] [Abstract][Full Text] [Related]
2. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Dooley KA; Lomax S; Zeibel JG; Miliani C; Ricciardi P; Hoenigswald A; Loew M; Delaney JK Analyst; 2013 Sep; 138(17):4838-48. PubMed ID: 23799233 [TBL] [Abstract][Full Text] [Related]
3. Natural products such as adhesives in oil paintings. Russo MV; Avino P Nat Prod Res; 2019 Apr; 33(7):956-969. PubMed ID: 26732127 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Animal Protein-Based Binders in Ancient Chinese Wall Paintings Using Atomic Force Microscopy and Fourier Transform Infrared Spectroscopy. Zou W; Yeo SY Appl Spectrosc; 2022 Oct; 76(10):1191-1205. PubMed ID: 35712890 [TBL] [Abstract][Full Text] [Related]
5. Identification of animal glue and hen-egg yolk in paintings by use of enzyme-linked immunosorbent assay (ELISA). Palmieri M; Vagnini M; Pitzurra L; Brunetti BG; Cartechini L Anal Bioanal Chem; 2013 Jul; 405(19):6365-71. PubMed ID: 23722889 [TBL] [Abstract][Full Text] [Related]
6. Tracing the biological origin of animal glues used in paintings through mitochondrial DNA analysis. Albertini E; Raggi L; Vagnini M; Sassolini A; Achilli A; Marconi G; Cartechini L; Veronesi F; Falcinelli M; Brunetti BG; Miliani C Anal Bioanal Chem; 2011 Mar; 399(9):2987-95. PubMed ID: 20953766 [TBL] [Abstract][Full Text] [Related]
7. Characterization of glue sizing layers in Portuguese wood paintings from the 15th and 16th centuries by SEM secondary electron images and μ-FTIR. Antunes V; J Oliveira M; Vargas H; Candeias A; Seruya A; Dias L; Serrão V; Coroado J Microsc Microanal; 2014 Feb; 20(1):66-71. PubMed ID: 24119396 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic Investigation Leading to the Documentation of Three Post-Byzantine Wall Paintings. Lampakis D; Karapanagiotis I; Katsibiri O Appl Spectrosc; 2017 Jan; 71(1):129-140. PubMed ID: 27354405 [TBL] [Abstract][Full Text] [Related]
9. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856-1945). Giorgi L; Nevin A; Nodari L; Comelli D; Alberti R; Gironda M; Mosca S; Zendri E; Piccolo M; Izzo FC Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():530-538. PubMed ID: 31078820 [TBL] [Abstract][Full Text] [Related]
10. ATR-FTIR spectroscopy and chemometrics: An interesting tool to discriminate and characterize counterfeit medicines. Custers D; Cauwenbergh T; Bothy JL; Courselle P; De Beer JO; Apers S; Deconinck E J Pharm Biomed Anal; 2015 Aug; 112():181-9. PubMed ID: 25476739 [TBL] [Abstract][Full Text] [Related]
11. Benefits of applying combined diffuse reflectance FTIR spectroscopy and principal component analysis for the study of blue tempera historical painting. Navas N; Romero-Pastor J; Manzano E; Cardell C Anal Chim Acta; 2008 Dec; 630(2):141-9. PubMed ID: 19012825 [TBL] [Abstract][Full Text] [Related]
12. [Application of the SIMCA method to cancer diagnosis with Fourier-transform infrared spectroscopy]. Li QB; Yang LM; Ling XF; Wang JS; Zhou XS; Shi JS; Wu JG Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Apr; 24(4):414-7. PubMed ID: 15766144 [TBL] [Abstract][Full Text] [Related]
13. Non-invasive detection of lead carboxylates in oil paintings by in situ infrared spectroscopy: How far can we go? Vagnini M; Anselmi C; Vivani R; Sgamellotti A Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122962. PubMed ID: 37302196 [TBL] [Abstract][Full Text] [Related]
14. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Svarcová S; Cermáková Z; Hradilová J; Bezdička P; Hradil D Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():514-25. PubMed ID: 24892529 [TBL] [Abstract][Full Text] [Related]
15. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy. Chen Y; Huang J; Yeap ZQ; Zhang X; Wu S; Ng CH; Yam MF Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():271-282. PubMed ID: 29626818 [TBL] [Abstract][Full Text] [Related]
16. Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. Ranalli G; Zanardini E; Rampazzi L; Corti C; Andreotti A; Colombini MP; Bosch-Roig P; Lustrato G; Giantomassi C; Zari D; Virilli P J Appl Microbiol; 2019 Jun; 126(6):1785-1796. PubMed ID: 30953595 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic analysis of roman wall paintings from Casa del Mitreo in Emerita Augusta, Mérida, Spain. Edreira MC; Feliu MJ; Fernández-Lorenzo C; Martín J Talanta; 2003 May; 59(6):1117-39. PubMed ID: 18969004 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Roman wall paintings found in Verona. Mazzocchin GA; Rudello D; Murgia E Ann Chim; 2007 Sep; 97(9):807-22. PubMed ID: 17970297 [TBL] [Abstract][Full Text] [Related]
19. Carotenoids produced by halophilic bacterial strains on mural paintings and laboratory conditions. Cojoc LR; Enache MI; Neagu SE; Lungulescu M; Setnescu R; Ruginescu R; Gomoiu I FEMS Microbiol Lett; 2019 Nov; 366(21):. PubMed ID: 31778178 [TBL] [Abstract][Full Text] [Related]
20. Micro-Raman spectroscopy and X-ray fluorescence spectrometry on the characterization of the Persian pigments used in the pre-seventeenth century wall paintings of Masjid-i Jāme of Abarqū, central Iran. Holakooei P; Karimy AH Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():419-27. PubMed ID: 25025315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]