These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26559628)

  • 1. Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters.
    Minh le V; Hara M; Yokoyama T; Nishihara T; Ueda M; Kuwano H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Nov; 62(11):2005-8. PubMed ID: 26559628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Piezoelectric Response and Ferroelectricity in Li and V/Nb/Ta Co-Doped w-AlN.
    Noor-A-Alam M; Olszewski OZ; Campanella H; Nolan M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):944-954. PubMed ID: 33382599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications.
    Yokoyama T; Iwazaki Y; Onda Y; Nishihara T; Sasajima Y; Ueda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1007-15. PubMed ID: 26067035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Characterization of the Li-Doped ZnO Thin Films Piezoelectric Energy Harvester with Multi-Resonant Frequencies.
    Zhao X; Li S; Ai C; Liu H; Wen D
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Low Frequency Vibration Energy Harvester Using ZnO Nanowires on Elastic Interdigitated Electrodes.
    Yoon BR; Park JH; Lee SK
    J Nanosci Nanotechnol; 2019 Jan; 19(1):66-72. PubMed ID: 30327003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters.
    Alameh AH; Gratuze M; Elsayed MY; Nabki F
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review.
    Iqbal A; Mohd-Yasin F
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a High-Density Piezoelectric Micromachined Ultrasonic Transducer Array Based on Patterned Aluminum Nitride Thin Film.
    Shin E; Yeo HG; Yeon A; Jin C; Park W; Lee SC; Choi H
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32604827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding.
    Tang G; Yang B; Hou C; Li G; Liu J; Chen X; Yang C
    Sci Rep; 2016 Dec; 6():38798. PubMed ID: 27929139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Polymer-based Piezoelectric Vibration Energy Harvester with a 3D Meshed-Core Structure.
    Tsukamoto T; Umino Y; Hashikura K; Shiomi S; Yamada K; Suzuki T
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermal conductivity of embedded nano-aluminum nitride-doped multi-walled carbon nanotubes in epoxy composites containing micro-aluminum nitride particles.
    Choi S; Im H; Kim J
    Nanotechnology; 2012 Feb; 23(6):065303. PubMed ID: 22248559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications.
    Oh Y; Noh J; Yoo J; Kang J; Hwang L; Hong J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1860-6. PubMed ID: 21937318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric-Field-Dependent Surface Potentials and Vibrational Energy-Harvesting Characteristics of Bi(Na
    Cho A; Kim DB; Cho YS
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13244-13250. PubMed ID: 30896144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.