These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26559954)

  • 21. Morphological evolution and diversity of pectoral fin skeletons in teleosts.
    Tanaka Y; Miura H; Tamura K; Abe G
    Zoological Lett; 2022 Nov; 8(1):13. PubMed ID: 36435818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional implications of variation in pectoral fin ray morphology between fishes with different patterns of pectoral fin use.
    Taft NK
    J Morphol; 2011 Sep; 272(9):1144-52. PubMed ID: 21626534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fish 'tails' result from outgrowth and reduction of two separate ancestral tails.
    Sallan L
    Curr Biol; 2016 Dec; 26(23):R1224-R1225. PubMed ID: 27923128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The evolution of underwater flight: The redistribution of pectoral fin rays, in manta rays and their relatives (Myliobatidae).
    Hall KC; Hundt PJ; Swenson JD; Summers AP; Crow KD
    J Morphol; 2018 Aug; 279(8):1155-1170. PubMed ID: 29878395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fish That Fish for Fish-A Peculiar Location of "Fishing Motoneurons" in the Striated Frogfish Antennarius striatus.
    Hagio H; Nishino H; Miyake K; Sato N; Sawada K; Nakayama T; Yamamoto N
    J Comp Neurol; 2024 Oct; 532(10):e25674. PubMed ID: 39380323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    Zoology (Jena); 2016 Oct; 119(5):414-420. PubMed ID: 27291816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): explaining phylogenetic variation with geometric morphometrics.
    Franklin O; Palmer C; Dyke G
    J Morphol; 2014 Oct; 275(10):1173-86. PubMed ID: 24797832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embryonic development of fin spines in Callorhinchus milii (Holocephali); implications for chondrichthyan fin spine evolution.
    Jerve A; Johanson Z; Ahlberg P; Boisvert C
    Evol Dev; 2014; 16(6):339-53. PubMed ID: 25378057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size structuring and allometric scaling relationships in coral reef fishes.
    Dunic JC; Baum JK
    J Anim Ecol; 2017 May; 86(3):577-589. PubMed ID: 28099761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome Sequencing of the Japanese Eel (
    Chen W; Bian C; You X; Li J; Ye L; Wen Z; Lv Y; Zhang X; Xu J; Yang S; Gu R; Lin X; Shi Q
    Mar Drugs; 2019 Jul; 17(7):. PubMed ID: 31330852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental hourglass and heterochronic shifts in fin and limb development.
    Onimaru K; Tatsumi K; Tanegashima C; Kadota M; Nishimura O; Kuraku S
    Elife; 2021 Feb; 10():. PubMed ID: 33560225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods.
    Miyake T; Kumamoto M; Iwata M; Sato R; Okabe M; Koie H; Kumai N; Fujii K; Matsuzaki K; Nakamura C; Yamauchi S; Yoshida K; Yoshimura K; Komoda A; Uyeno T; Abe Y
    Anat Rec (Hoboken); 2016 Sep; 299(9):1203-23. PubMed ID: 27343022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Life in the flow lane: differences in pectoral fin morphology suggest transitions in station-holding demand across species of marine sculpin.
    Kane EA; Higham TE
    Zoology (Jena); 2012 Aug; 115(4):223-32. PubMed ID: 22789830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Living in the danger zone: Exposure to predators and the evolution of spines and body armor in mammals.
    Stankowich T; Campbell LA
    Evolution; 2016 Jul; 70(7):1501-11. PubMed ID: 27240724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.
    Wen L; Ren Z; Di Santo V; Hu K; Yuan T; Wang T; Lauder GV
    Soft Robot; 2018 Aug; 5(4):375-388. PubMed ID: 29634444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteological features of some clupeid fishes (Teleostei: Clupeiformes) of Iran.
    Jawad LA; Dizaj LP; Esmaeili HR
    Anat Histol Embryol; 2024 Jul; 53(4):e13070. PubMed ID: 39031825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chriolepis prolata, a new species of Atlantic goby (Teleostei: Gobiidae) from the North American continental shelf.
    Hastings PA; Findley LT
    Zootaxa; 2015 Jan; 3904(4):589-95. PubMed ID: 25660803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Invertebrate predation selects for the loss of a morphological antipredator trait.
    Mikolajewski DJ; Johansson F; Wohlfahrt B; Stoks R
    Evolution; 2006 Jun; 60(6):1306-10. PubMed ID: 16892980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Characteristics of the reparative regeneration of fins in the polypterid fish (Polypteridae, Actinopterygii)].
    Nikiforova AI; Golichenkov VA
    Ontogenez; 2012; 43(2):136-42. PubMed ID: 22650079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.