These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 26559965)
1. Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses. Nitta S; Furukawa Y; Kakegawa T Orig Life Evol Biosph; 2016 Jun; 46(2-3):189-202. PubMed ID: 26559965 [TBL] [Abstract][Full Text] [Related]
2. Selective stabilization of ribose by borate. Furukawa Y; Horiuchi M; Kakegawa T Orig Life Evol Biosph; 2013 Oct; 43(4-5):353-61. PubMed ID: 24352855 [TBL] [Abstract][Full Text] [Related]
3. On the stabilization of ribose by silicate minerals. Vázquez-Mayagoitia Á; Horton SR; Sumpter BG; Šponer J; Šponer JE; Fuentes-Cabrera M Astrobiology; 2011 Mar; 11(2):115-21. PubMed ID: 21391822 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study on the factors controlling the stability of the borate complexes of ribose, arabinose, lyxose, and xylose. Sponer JE; Sumpter BG; Leszczynski J; Sponer J; Fuentes-Cabrera M Chemistry; 2008; 14(32):9990-8. PubMed ID: 18810746 [TBL] [Abstract][Full Text] [Related]
5. Comment on "The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates". Kim HJ; Benner SA Science; 2010 Aug; 329(5994):902; author reply 902. PubMed ID: 20724620 [TBL] [Abstract][Full Text] [Related]
7. Do Soluble Phosphates Direct the Formose Reaction towards Pentose Sugars? Camprubi E; Harrison SA; Jordan SF; Bonnel J; Pinna S; Lane N Astrobiology; 2022 Aug; 22(8):981-991. PubMed ID: 35833833 [TBL] [Abstract][Full Text] [Related]
8. Rates of decomposition of ribose and other sugars: implications for chemical evolution. Larralde R; Robertson MP; Miller SL Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8158-60. PubMed ID: 7667262 [TBL] [Abstract][Full Text] [Related]
9. Evaporite Borate-Containing Mineral Ensembles Make Phosphate Available and Regiospecifically Phosphorylate Ribonucleosides: Borate as a Multifaceted Problem Solver in Prebiotic Chemistry. Kim HJ; Furukawa Y; Kakegawa T; Bita A; Scorei R; Benner SA Angew Chem Int Ed Engl; 2016 Dec; 55(51):15816-15820. PubMed ID: 27862722 [TBL] [Abstract][Full Text] [Related]
10. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240 [TBL] [Abstract][Full Text] [Related]
11. Ion release, porosity, solubility, and bioactivity of MTA Plus tricalcium silicate. Gandolfi MG; Siboni F; Primus CM; Prati C J Endod; 2014 Oct; 40(10):1632-7. PubMed ID: 25260736 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite. Sasaki K; Hayashi Y; Toshiyuki K; Guo B Chemosphere; 2018 Sep; 207():139-146. PubMed ID: 29793025 [TBL] [Abstract][Full Text] [Related]
13. Desorption/ionization on porous silicon mass spectrometry studies on pentose-borate complexes. Li Q; Ricardo A; Benner SA; Winefordner JD; Powell DH Anal Chem; 2005 Jul; 77(14):4503-8. PubMed ID: 16013866 [TBL] [Abstract][Full Text] [Related]
14. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. Huang W; Day DE; Kittiratanapiboon K; Rahaman MN J Mater Sci Mater Med; 2006 Jul; 17(7):583-96. PubMed ID: 16770542 [TBL] [Abstract][Full Text] [Related]
15. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies. Szumera M Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():1-6. PubMed ID: 24759778 [TBL] [Abstract][Full Text] [Related]