These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 26560029)
1. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. VanBuren R; Bryant D; Edger PP; Tang H; Burgess D; Challabathula D; Spittle K; Hall R; Gu J; Lyons E; Freeling M; Bartels D; Ten Hallers B; Hastie A; Michael TP; Mockler TC Nature; 2015 Nov; 527(7579):508-11. PubMed ID: 26560029 [TBL] [Abstract][Full Text] [Related]
2. A chromosome-scale assembly of the model desiccation tolerant grass VanBuren R; Wai CM; Keilwagen J; Pardo J Plant Direct; 2018 Nov; 2(11):e00096. PubMed ID: 31245697 [No Abstract] [Full Text] [Related]
3. 454 sequencing put to the test using the complex genome of barley. Wicker T; Schlagenhauf E; Graner A; Close TJ; Keller B; Stein N BMC Genomics; 2006 Oct; 7():275. PubMed ID: 17067373 [TBL] [Abstract][Full Text] [Related]
4. Hybrid assembly of the large and highly repetitive genome of Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360 [TBL] [Abstract][Full Text] [Related]
5. Seed desiccation mechanisms co-opted for vegetative desiccation in the resurrection grass Oropetium thomaeum. VanBuren R; Wai CM; Zhang Q; Song X; Edger PP; Bryant D; Michael TP; Mockler TC; Bartels D Plant Cell Environ; 2017 Oct; 40(10):2292-2306. PubMed ID: 28730594 [TBL] [Abstract][Full Text] [Related]
6. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads. Du H; Liang C Nat Commun; 2019 Nov; 10(1):5360. PubMed ID: 31767853 [TBL] [Abstract][Full Text] [Related]
7. Sugar metabolism in the desiccation tolerant grass Oropetium thomaeum in response to environmental stresses. Zhang Q; Song X; Bartels D Plant Sci; 2018 May; 270():30-36. PubMed ID: 29576083 [TBL] [Abstract][Full Text] [Related]
8. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Zimin AV; Stevens KA; Crepeau MW; Puiu D; Wegrzyn JL; Yorke JA; Langley CH; Neale DB; Salzberg SL Gigascience; 2017 Jan; 6(1):1-4. PubMed ID: 28369353 [TBL] [Abstract][Full Text] [Related]
10. Enrichment of gene-coding sequences in maize by genome filtration. Whitelaw CA; Barbazuk WB; Pertea G; Chan AP; Cheung F; Lee Y; Zheng L; van Heeringen S; Karamycheva S; Bennetzen JL; SanMiguel P; Lakey N; Bedell J; Yuan Y; Budiman MA; Resnick A; Van Aken S; Utterback T; Riedmuller S; Williams M; Feldblyum T; Schubert K; Beachy R; Fraser CM; Quackenbush J Science; 2003 Dec; 302(5653):2118-20. PubMed ID: 14684821 [TBL] [Abstract][Full Text] [Related]
11. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Koren S; Phillippy AM Curr Opin Microbiol; 2015 Feb; 23():110-20. PubMed ID: 25461581 [TBL] [Abstract][Full Text] [Related]
12. Improved maize reference genome with single-molecule technologies. Jiao Y; Peluso P; Shi J; Liang T; Stitzer MC; Wang B; Campbell MS; Stein JC; Wei X; Chin CS; Guill K; Regulski M; Kumari S; Olson A; Gent J; Schneider KL; Wolfgruber TK; May MR; Springer NM; Antoniou E; McCombie WR; Presting GG; McMullen M; Ross-Ibarra J; Dawe RK; Hastie A; Rank DR; Ware D Nature; 2017 Jun; 546(7659):524-527. PubMed ID: 28605751 [TBL] [Abstract][Full Text] [Related]
13. Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii. Lwin AK; Bertolini E; Pè ME; Zuccolo A Mol Genet Genomics; 2017 Feb; 292(1):157-171. PubMed ID: 27778102 [TBL] [Abstract][Full Text] [Related]
14. Multi-CAR: a tool of contig scaffolding using multiple references. Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633 [TBL] [Abstract][Full Text] [Related]
15. Characterization of 954 bovine full-CDS cDNA sequences. Harhay GP; Sonstegard TS; Keele JW; Heaton MP; Clawson ML; Snelling WM; Wiedmann RT; Van Tassell CP; Smith TP BMC Genomics; 2005 Nov; 6():166. PubMed ID: 16305752 [TBL] [Abstract][Full Text] [Related]
16. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
17. Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima. Boutte J; Aliaga B; Lima O; Ferreira de Carvalho J; Ainouche A; Macas J; Rousseau-Gueutin M; Coriton O; Ainouche M; Salmon A G3 (Bethesda); 2015 Nov; 6(1):29-40. PubMed ID: 26530424 [TBL] [Abstract][Full Text] [Related]
18. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. Yasui Y; Hirakawa H; Ueno M; Matsui K; Katsube-Tanaka T; Yang SJ; Aii J; Sato S; Mori M DNA Res; 2016 Jun; 23(3):215-24. PubMed ID: 27037832 [TBL] [Abstract][Full Text] [Related]
19. The complex task of choosing a de novo assembly: lessons from fungal genomes. Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360 [TBL] [Abstract][Full Text] [Related]
20. Building near-complete plant genomes. Michael TP; VanBuren R Curr Opin Plant Biol; 2020 Apr; 54():26-33. PubMed ID: 31981929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]