These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 26560189)
1. i-TTM Model for Ab Initio-Based Ion-Water Interaction Potentials. 1. Halide-Water Potential Energy Functions. Arismendi-Arrieta DJ; Riera M; Bajaj P; Prosmiti R; Paesani F J Phys Chem B; 2016 Mar; 120(8):1822-32. PubMed ID: 26560189 [TBL] [Abstract][Full Text] [Related]
2. The i-TTM model for ab initio-based ion-water interaction potentials. II. Alkali metal ion-water potential energy functions. Riera M; Götz AW; Paesani F Phys Chem Chem Phys; 2016 Nov; 18(44):30334-30343. PubMed ID: 27711564 [TBL] [Abstract][Full Text] [Related]
3. Toward Chemical Accuracy in the Description of Ion-Water Interactions through Many-Body Representations. I. Halide-Water Dimer Potential Energy Surfaces. Bajaj P; Götz AW; Paesani F J Chem Theory Comput; 2016 Jun; 12(6):2698-705. PubMed ID: 27145081 [TBL] [Abstract][Full Text] [Related]
4. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces. Bajaj P; Wang XG; Carrington T; Paesani F J Chem Phys; 2018 Mar; 148(10):102321. PubMed ID: 29544337 [TBL] [Abstract][Full Text] [Related]
5. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing Herman KM; Xantheas SS Phys Chem Chem Phys; 2023 Mar; 25(10):7120-7143. PubMed ID: 36853239 [TBL] [Abstract][Full Text] [Related]
6. Data-Driven Many-Body Models for Molecular Fluids: CO Riera M; Yeh EP; Paesani F J Chem Theory Comput; 2020 Apr; 16(4):2246-2257. PubMed ID: 32130003 [TBL] [Abstract][Full Text] [Related]
7. Modeling the hydration of mono-atomic anions from the gas phase to the bulk phase: the case of the halide ions F-, Cl-, and Br-. Trumm M; Martínez YO; Réal F; Masella M; Vallet V; Schimmelpfennig B J Chem Phys; 2012 Jan; 136(4):044509. PubMed ID: 22299893 [TBL] [Abstract][Full Text] [Related]
8. Study of the stabilization energies of halide-water clusters: an application of first-principles interaction potentials based on a polarizable and flexible model. Ayala R; Martínez JM; Pappalardo RR; Sánchez Marcos E J Chem Phys; 2004 Oct; 121(15):7269-75. PubMed ID: 15473795 [TBL] [Abstract][Full Text] [Related]
9. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions. Werhahn JC; Akase D; Xantheas SS J Chem Phys; 2014 Aug; 141(6):064118. PubMed ID: 25134562 [TBL] [Abstract][Full Text] [Related]
10. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions. Wang Y; Bowman JM; Kamarchik E J Chem Phys; 2016 Mar; 144(11):114311. PubMed ID: 27004880 [TBL] [Abstract][Full Text] [Related]
11. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions. Paesani F Acc Chem Res; 2016 Sep; 49(9):1844-51. PubMed ID: 27548325 [TBL] [Abstract][Full Text] [Related]
12. Toward chemical accuracy in the description of ion-water interactions through many-body representations. Alkali-water dimer potential energy surfaces. Riera M; Mardirossian N; Bajaj P; Götz AW; Paesani F J Chem Phys; 2017 Oct; 147(16):161715. PubMed ID: 29096469 [TBL] [Abstract][Full Text] [Related]
13. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. Reddy SK; Straight SC; Bajaj P; Huy Pham C; Riera M; Moberg DR; Morales MA; Knight C; Götz AW; Paesani F J Chem Phys; 2016 Nov; 145(19):194504. PubMed ID: 27875875 [TBL] [Abstract][Full Text] [Related]
14. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations. Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003 [TBL] [Abstract][Full Text] [Related]
15. Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. Fanourgakis GS; Xantheas SS J Chem Phys; 2008 Feb; 128(7):074506. PubMed ID: 18298156 [TBL] [Abstract][Full Text] [Related]
16. Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer. Wang Y; Huang X; Shepler BC; Braams BJ; Bowman JM J Chem Phys; 2011 Mar; 134(9):094509. PubMed ID: 21384987 [TBL] [Abstract][Full Text] [Related]
17. A Benchmark Protocol for DFT Approaches and Data-Driven Models for Halide-Water Clusters. Rodríguez-Segundo R; Arismendi-Arrieta DJ; Prosmiti R Molecules; 2022 Mar; 27(5):. PubMed ID: 35268757 [TBL] [Abstract][Full Text] [Related]
18. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry. Miller Y; Thomas JL; Kemp DD; Finlayson-Pitts BJ; Gordon MS; Tobias DJ; Gerber RB J Phys Chem A; 2009 Nov; 113(46):12805-14. PubMed ID: 19817362 [TBL] [Abstract][Full Text] [Related]
19. Quantum vibrational analysis of hydrated ions using an ab initio potential. Kamarchik E; Bowman JM J Phys Chem A; 2010 Dec; 114(49):12945-51. PubMed ID: 21080684 [TBL] [Abstract][Full Text] [Related]