These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26560640)
21. Desorbing of decabromodiphenyl ether in low permeability soil and the remediation potential of enhanced electrokinetic. Zhang M; Lu C; Zhang W; Lin K; Huang K Chemosphere; 2020 Nov; 258():127376. PubMed ID: 32563070 [TBL] [Abstract][Full Text] [Related]
22. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867 [TBL] [Abstract][Full Text] [Related]
23. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H; Fang Z; Tsang PE; Fang J; Zhao D Environ Pollut; 2016 Jul; 214():94-100. PubMed ID: 27064615 [TBL] [Abstract][Full Text] [Related]
24. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Chang MC; Kang HY J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920 [TBL] [Abstract][Full Text] [Related]
25. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Zhang R; Zhang N; Fang Z Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164 [TBL] [Abstract][Full Text] [Related]
26. Chelating surfactant N-lauroyl ethylenediamine triacetate enhanced electrokinetic remediation of copper and decabromodiphenyl ether co-contaminated low permeability soil: Applicability analysis. Zhang M; Feng M; Bai X; Liu L; Lin K; Li J J Environ Manage; 2022 Jan; 301():113888. PubMed ID: 34619584 [TBL] [Abstract][Full Text] [Related]
27. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Oleszczuk P; Kołtowski M Chemosphere; 2017 Feb; 168():1467-1476. PubMed ID: 27916262 [TBL] [Abstract][Full Text] [Related]
28. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483 [TBL] [Abstract][Full Text] [Related]
29. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J; Fang Z; Cheng W; Tsang PE; Zhao D Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497 [TBL] [Abstract][Full Text] [Related]
30. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB. Fu R; Wen D; Chen X; Gu Y; Xu Z; Zhang W Environ Sci Pollut Res Int; 2017 May; 24(15):13509-13518. PubMed ID: 28390022 [TBL] [Abstract][Full Text] [Related]
31. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. Karthick A; Roy B; Chattopadhyay P J Environ Manage; 2019 Jun; 240():93-107. PubMed ID: 30928799 [TBL] [Abstract][Full Text] [Related]
32. Complete debromination of decabromodiphenyl ether using the integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron. Xu G; Wang J; Lu M Chemosphere; 2014 Dec; 117():455-61. PubMed ID: 25217713 [TBL] [Abstract][Full Text] [Related]
33. Phytotoxicity of iron-based materials in mung bean: Seed germination tests. Sun Y; Wang W; Zheng F; Zhang S; Wang F; Liu S Chemosphere; 2020 Jul; 251():126432. PubMed ID: 32169709 [TBL] [Abstract][Full Text] [Related]
34. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Chen X; Yao X; Yu C; Su X; Shen C; Chen C; Huang R; Xu X Environ Sci Pollut Res Int; 2014 Apr; 21(7):5201-10. PubMed ID: 24390111 [TBL] [Abstract][Full Text] [Related]
35. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Shih YH; Tai YT Chemosphere; 2010 Mar; 78(10):1200-6. PubMed ID: 20117822 [TBL] [Abstract][Full Text] [Related]
36. Enhanced reductive debromination of decabromodiphenyl ether by organic-attapulgite supported Fe/Pd nanoparticles: Synergetic effect and mechanism. Liu Z; Yang H; Wang M; Sun Y; Fei Z; Chen S; Luo R; Hu L; Gu C J Colloid Interface Sci; 2022 May; 613():337-348. PubMed ID: 35051719 [TBL] [Abstract][Full Text] [Related]
37. Degradation of lindane contaminated soil using zero-valent iron nanoparticles. Singh R; Singh A; Misra V; Singh RP J Biomed Nanotechnol; 2011 Feb; 7(1):175-6. PubMed ID: 21485858 [TBL] [Abstract][Full Text] [Related]
38. Highly efficient remediation of decabromodiphenyl ether-contaminated soil using mechanochemistry in the presence of additive and its mechanism. Yi Y; Kou F; Tsang PE; Fang Z J Environ Manage; 2021 Dec; 299():113595. PubMed ID: 34450304 [TBL] [Abstract][Full Text] [Related]
39. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type. Gomes HI; Dias-Ferreira C; Ottosen LM; Ribeiro AB Chemosphere; 2015 Jul; 131():157-63. PubMed ID: 25841071 [TBL] [Abstract][Full Text] [Related]
40. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism. Liu Z; Gu C; Ye M; Bian Y; Cheng Y; Wang F; Yang X; Song Y; Jiang X J Hazard Mater; 2015 Nov; 298():328-37. PubMed ID: 26094061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]