These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26560771)

  • 1. Frequency stability of a wavelength meter and applications to laser frequency stabilization.
    Saleh K; Millo J; Didier A; Kersalé Y; Lacroûte C
    Appl Opt; 2015 Nov; 54(32):9446-9. PubMed ID: 26560771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser frequency stabilization using a commercial wavelength meter.
    Couturier L; Nosske I; Hu F; Tan C; Qiao C; Jiang YH; Chen P; Weidemüller M
    Rev Sci Instrum; 2018 Apr; 89(4):043103. PubMed ID: 29716314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastable laser with average fractional frequency drift rate below 5 × 10⁻¹⁹/s.
    Hagemann C; Grebing C; Lisdat C; Falke S; Legero T; Sterr U; Riehle F; Martin MJ; Ye J
    Opt Lett; 2014 Sep; 39(17):5102-5. PubMed ID: 25166084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locking Multi-Laser Frequencies to a Precision Wavelength Meter: Application to Cold Atoms.
    Kim J; Kim K; Lee D; Shin Y; Kang S; Kim JR; Choi Y; An K; Lee M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibrating an interferometric laser frequency stabilization to megahertz precision.
    Brachmann JF; Kinder T; Dieckmann K
    Appl Opt; 2012 Aug; 51(22):5517-21. PubMed ID: 22859042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastable offset-locked frequency-stabilized heterodyne laser source with water cooling.
    Yang H; Yang R; Hu P; Tan J
    Appl Opt; 2017 Nov; 56(33):9179-9185. PubMed ID: 29216087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability.
    McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S
    Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H(2)O17 absorption lines at 1.384 microm.
    Galzerano G; Fasci E; Castrillo A; Coluccelli N; Gianfrani L; Laporta P
    Opt Lett; 2009 Oct; 34(20):3107-9. PubMed ID: 19838241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge.
    Lee MW; Jarratt MC; Marciniak C; Biercuk MJ
    Opt Express; 2014 Mar; 22(6):7210-21. PubMed ID: 24664069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-distance remote comparison of ultrastable optical frequencies with 10(-15) instability in fractions of a second.
    Pape A; Terra O; Friebe J; Riedmann M; Wübbena T; Rasel EM; Predehl K; Legero T; Lipphardt B; Schnatz H; Grosche G
    Opt Express; 2010 Sep; 18(20):21477-83. PubMed ID: 20941043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency stabilization of an internal mirror He-Ne laser with a high frequency reproducibility.
    Diao X; Tan J; Hu P; Yang H; Wang P
    Appl Opt; 2013 Jan; 52(3):456-60. PubMed ID: 23338193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments.
    Zhang J; Yuan WH; Deng K; Deng A; Xu ZT; Qin CB; Lu ZH; Luo J
    Rev Sci Instrum; 2013 Dec; 84(12):123109. PubMed ID: 24387422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A precise high-resolution near infrared continuous wave cavity ringdown spectrometer using a Fourier transform based wavelength calibration.
    Fehling C; Friedrichs G
    Rev Sci Instrum; 2010 May; 81(5):053109. PubMed ID: 20515126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-tuning-range frequency stabilization of an ultraviolet laser by an open-loop piezoelectric ceramic controlled Fabry-Pérot cavity.
    Zheng YX; Cui JM; Ai MZ; Qian ZH; Cao H; Huang YF; Jia XJ; Li CF; Guo GC
    Opt Express; 2021 Aug; 29(16):24674-24683. PubMed ID: 34614818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules.
    Dai DP; Xia Y; Yin YN; Yang XX; Fang YF; Li XJ; Yin JP
    Opt Express; 2014 Nov; 22(23):28645-52. PubMed ID: 25402105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser stabilization with a frequency-to-voltage chip for narrow-line laser cooling.
    McFerran JJ
    Opt Lett; 2018 Apr; 43(7):1475-1478. PubMed ID: 29601008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precisely tunable continuous-wave terahertz source with interferometric frequency control.
    Deninger AJ; Göbel T; Schönherr D; Kinder T; Roggenbuck A; Köberle M; Lison F; Müller-Wirts T; Meissner P
    Rev Sci Instrum; 2008 Apr; 79(4):044702. PubMed ID: 18447539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and low-cost setup for part per billion level frequency stabilization and characterization of red He-Ne laser.
    Singh SK; Kumar A; Shirhatti PR
    HardwareX; 2023 Jun; 14():e00421. PubMed ID: 37193014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical frequency stabilization with a synchronous frequency-to-voltage converter.
    Reynolds FC; McFerran JJ
    Appl Opt; 2019 Apr; 58(12):3128-3132. PubMed ID: 31044786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser wavelength stabilization with a passive interferometer.
    Lipsett MS; Lee PH
    Appl Opt; 1966 May; 5(5):823-6. PubMed ID: 20048954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.