BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26560778)

  • 1. Binocular open-view system to perform estimations of aberrations and scattering in the human eye.
    García-Guerra CE; Aldaba M; Arjona M; Pujol J
    Appl Opt; 2015 Nov; 54(32):9504-8. PubMed ID: 26560778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view.
    Wei X; Thibos L
    Opt Express; 2010 Jan; 18(2):1134-43. PubMed ID: 20173936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration.
    Kobayashi M; Nakazawa N; Yamaguchi T; Otaki T; Hirohara Y; Mihashi T
    Appl Opt; 2008 Sep; 47(25):4619-26. PubMed ID: 18758533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.
    Díaz-Doutón F; Benito A; Pujol J; Arjona M; Güell JL; Artal P
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1710-6. PubMed ID: 16565413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response for light scattered in the ocular fundus from double-pass and Hartmann-Shack estimations.
    García-Guerra CE; Aldaba M; Arjona M; Díaz-Doutón F; Martínez-Roda JA; Pujol J
    J Opt Soc Am A Opt Image Sci Vis; 2016 Nov; 33(11):2150-2157. PubMed ID: 27857440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the SVOne Handheld Autorefractor in a Pediatric Population.
    Rosenfield M; Ciuffreda KJ
    Optom Vis Sci; 2017 Feb; 94(2):159-165. PubMed ID: 27668640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.
    Fernández EJ; Artal P
    Opt Express; 2008 Dec; 16(26):21199-208. PubMed ID: 19104549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal dynamics of ocular aberrations: monocular vs binocular vision.
    Mira-Agudelo A; Lundström L; Artal P
    Ophthalmic Physiol Opt; 2009 May; 29(3):256-63. PubMed ID: 19422556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binocular adaptive optics visual simulator.
    Fernández EJ; Prieto PM; Artal P
    Opt Lett; 2009 Sep; 34(17):2628-30. PubMed ID: 19724513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual wavefront sensing channel monocular adaptive optics system for accommodation studies.
    Hampson KM; Chin SS; Mallen EA
    Opt Express; 2009 Sep; 17(20):18229-40. PubMed ID: 19907614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision of a commercial hartmann-shack aberrometer: limits of total wavefront laser vision correction.
    López-Miguel A; Maldonado MJ; Belzunce A; Barrio-Barrio J; Coco-Martín MB; Nieto JC
    Am J Ophthalmol; 2012 Nov; 154(5):799-807.e5. PubMed ID: 22902046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions.
    Zhou C; Wang W; Yang K; Chai X; Ren Q
    Appl Opt; 2008 Dec; 47(34):6434-41. PubMed ID: 19037372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatability of peripheral aberrations in young emmetropes.
    Baskaran K; Theagarayan B; Carius S; Gustafsson J
    Optom Vis Sci; 2010 Oct; 87(10):751-9. PubMed ID: 20818283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-pass versus aberrometric modulation transfer function in green light.
    Rodríguez P; Navarro R
    J Biomed Opt; 2007; 12(4):044018. PubMed ID: 17867822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wavelength tunable wavefront sensor for the human eye.
    Manzanera S; Canovas C; Prieto PM; Artal P
    Opt Express; 2008 May; 16(11):7748-55. PubMed ID: 18545485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twisted-nematic liquid-crystal-on-silicon adaptive optics aberrometer and wavefront corrector.
    Eng SH; Reinholz F; Chai D
    J Biomed Opt; 2009; 14(4):044014. PubMed ID: 19725726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography.
    Chalita MR; Chavala S; Xu M; Krueger RR
    Ophthalmology; 2004 Mar; 111(3):447-53. PubMed ID: 15019317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics.
    Fernández EJ; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1732-8. PubMed ID: 16211799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The placido wavefront sensor and preliminary measurement on a mechanical eye.
    Carvalho LA; Castro JC
    Optom Vis Sci; 2006 Feb; 83(2):108-18. PubMed ID: 16501413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront aberrometry: comparing and profiling higher-order aberrations produced by intraocular lenses in vitro using a physical model eye system and Hartman-Shack aberrometry.
    McKelvie J; Ku JY; McArdle B; McGhee C
    J Cataract Refract Surg; 2009 Mar; 35(3):547-55. PubMed ID: 19251150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.