BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26560778)

  • 21. Comparison of wavefront aberrations in rabbit and human eyes.
    Chen L; Huang LC; Gray B; Chernyak DA
    Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Off-axis wave front measurements for optical correction in eccentric viewing.
    Lundström L; Unsbo P; Gustafsson J
    J Biomed Opt; 2005; 10(3):034002. PubMed ID: 16229646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of aberrations in different types of progressive power lenses.
    Villegas EA; Artal P
    Ophthalmic Physiol Opt; 2004 Sep; 24(5):419-26. PubMed ID: 15315656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new low-cost, compact, auto-phoropter for refractive assessment in developing countries.
    Amirsolaimani B; Peyman G; Schwiegerling J; Bablumyan A; Peyghambarian N
    Sci Rep; 2017 Oct; 7(1):13990. PubMed ID: 29070904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncorrected wavefront error and visual performance during RGP wear in keratoconus.
    Marsack JD; Parker KE; Pesudovs K; Donnelly WJ; Applegate RA
    Optom Vis Sci; 2007 Jun; 84(6):463-70. PubMed ID: 17568315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cause of monocular diplopia diagnosed by combining double-pass retinal image assessment and Hartmann-Shack aberrometry.
    Pérez GM; Abenza S; De Casas A; Marín JM; Artal P
    J Refract Surg; 2010 Apr; 26(4):301-4. PubMed ID: 20415326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic error of a large dynamic range aberrometer.
    Wu P; DeHoog E; Schwiegerling J
    Appl Opt; 2009 Nov; 48(32):6376-80. PubMed ID: 19904339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison between subjective refraction and aberrometry-derived refraction in keratoconus patients and control subjects.
    Jinabhai A; O'Donnell C; Radhakrishnan H
    Curr Eye Res; 2010 Aug; 35(8):703-14. PubMed ID: 20673047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of internal refraction with the optical path difference scan.
    Muftuoglu O; Erdem U
    Ophthalmology; 2008 Jan; 115(1):57-66. PubMed ID: 18166405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging.
    Wanek JM; Mori M; Shahidi M
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1296-304. PubMed ID: 17429475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Through-focus performance with multifocal contact lenses: effect of binocularity, pupil diameter and inherent ocular aberrations.
    Plainis S; Ntzilepis G; Atchison DA; Charman WN
    Ophthalmic Physiol Opt; 2013 Jan; 33(1):42-50. PubMed ID: 23199097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scatter and its implications for the measurement of optical image quality in human eyes.
    Cox MJ; Atchison DA; Scott DH
    Optom Vis Sci; 2003 Jan; 80(1):58-68. PubMed ID: 12553545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes.
    Yoon G; Pantanelli S; Nagy LJ
    J Biomed Opt; 2006; 11(3):30502. PubMed ID: 16822048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repeatability of internal aberrometry with a new simultaneous capture aberrometer/corneal topographer.
    Gifford P; Swarbrick HA
    Optom Vis Sci; 2012 Jun; 89(6):929-38. PubMed ID: 22543999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ocular aberrations in barn owl eyes.
    Harmening WM; Vobig MA; Walter P; Wagner H
    Vision Res; 2007 Oct; 47(23):2934-42. PubMed ID: 17845811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations.
    Fernández EJ; Prieto PM; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A48-55. PubMed ID: 21045890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of monochromatic aberrations in young adults with different visual acuity and refractive errors.
    Yazar S; Hewitt AW; Forward H; McKnight CM; Tan A; Mountain JA; Mackey DA
    J Cataract Refract Surg; 2014 Mar; 40(3):441-9. PubMed ID: 24417894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor.
    López-Miguel A; Martínez-Almeida L; González-García MJ; Coco-Martín MB; Sobrado-Calvo P; Maldonado MJ
    J Cataract Refract Surg; 2013 Feb; 39(2):242-9. PubMed ID: 23142546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.