These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26560866)

  • 21. Computer simulations of three-dimensional propagation in ventricular myocardium. Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation.
    Pollard AE; Burgess MJ; Spitzer KW
    Circ Res; 1993 Apr; 72(4):744-56. PubMed ID: 8443866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation calculations of cardiac virtual cathode effects.
    Barach JP
    Comput Biomed Res; 1996 Apr; 29(2):77-84. PubMed ID: 8785912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using a sensitivity study to facilitate the design of a multi-electrode array to measure six cardiac conductivity values.
    Johnston BM
    Math Biosci; 2013 Jul; 244(1):40-6. PubMed ID: 23624254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling ventricular excitation: axial and orthotropic anisotropy effects on wavefronts and potentials.
    Colli-Franzone P; Guerri L; Taccardi B
    Math Biosci; 2004; 188():191-205. PubMed ID: 14766102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of spectral methods in bidomain studies.
    Trayanova N; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(3-4):255-77. PubMed ID: 1478093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the electric axis of stimulation on the induced transmembrane potentials in ellipsoidal bidomain heart.
    Entcheva E
    Ann Biomed Eng; 2000 Mar; 28(3):244-52. PubMed ID: 10784089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deriving macroscopic myocardial conductivities by homogenization of microscopic models.
    Hand PE; Griffith BE; Peskin CS
    Bull Math Biol; 2009 Oct; 71(7):1707-26. PubMed ID: 19412638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation.
    Trayanova NA; Roth BJ; Malden LJ
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties.
    Roth BJ; Wikswo JP
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):232-40. PubMed ID: 8045575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle.
    Roth BJ
    J Math Biol; 1992; 30(6):633-46. PubMed ID: 1640183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The electrical potential produced by a strand of cardiac muscle: a bidomain analysis.
    Roth BJ
    Ann Biomed Eng; 1988; 16(6):609-37. PubMed ID: 3228221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues.
    Saleheen HI; Ng KT
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):15-25. PubMed ID: 9444836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracellular measurement of anisotropic bidomain myocardial conductivities. I. Theoretical analysis.
    Le Guyader P; Trelles F; Savard P
    Ann Biomed Eng; 2001 Oct; 29(10):862-77. PubMed ID: 11764317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A solution method for the determination of cardiac potential distributions with an alternating current source.
    Johnston BM; Johnston PR; Kilpatrick D
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):223-33. PubMed ID: 18568820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements.
    Leon LJ; Horácek BM
    J Electrocardiol; 1991 Jan; 24(1):1-15. PubMed ID: 2056264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic fields from simulated cardiac action currents.
    Barach JP; Wikswo JP
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):969-74. PubMed ID: 7959804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulation of cardiac propagation: effects of fiber rotation, intramural conductivity, and optical mapping.
    Ghazanfari A; Rodriguez MP; Vigmond E; Nygren A
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2041-8. PubMed ID: 24956621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of electrode configurations for measuring cardiac tissue conductivities and fibre rotation.
    Johnston BM; Johnston PR; Kilpatrick D
    Ann Biomed Eng; 2006 Jun; 34(6):986-96. PubMed ID: 16783654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solving the cardiac bidomain equations for discontinuous conductivities.
    Austin TM; Trew ML; Pullan AJ
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1265-72. PubMed ID: 16830931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.