BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26561004)

  • 1. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM.
    Pfreundschuh M; Alsteens D; Wieneke R; Zhang C; Coughlin SR; Tampé R; Kobilka BK; Müller DJ
    Nat Commun; 2015 Nov; 6():8857. PubMed ID: 26561004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.
    Alsteens D; Pfreundschuh M; Zhang C; Spoerri PM; Coughlin SR; Kobilka BK; Müller DJ
    Nat Methods; 2015 Sep; 12(9):845-851. PubMed ID: 26167642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox.
    Laskowski PR; Pfreundschuh M; Stauffer M; Ucurum Z; Fotiadis D; Müller DJ
    ACS Nano; 2017 Aug; 11(8):8292-8301. PubMed ID: 28745869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy.
    Pfreundschuh M; Alsteens D; Hilbert M; Steinmetz MO; Müller DJ
    Nano Lett; 2014 May; 14(5):2957-64. PubMed ID: 24766578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Plasticity of Human Protease-Activated Receptor 1 upon Antagonist- and Agonist-Binding.
    Spoerri PM; Sapra KT; Zhang C; Mari SA; Kato HE; Kobilka BK; Müller DJ
    Structure; 2019 Oct; 27(10):1517-1526.e3. PubMed ID: 31422910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist.
    Spoerri PM; Kato HE; Pfreundschuh M; Mari SA; Serdiuk T; Thoma J; Sapra KT; Zhang C; Kobilka BK; Müller DJ
    Structure; 2018 Jun; 26(6):829-838.e4. PubMed ID: 29731231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM imaging of ligand binding to platelet integrin alphaIIbbeta3 receptors reconstituted into planar lipid bilayers.
    Hussain MA; Agnihotri A; Siedlecki CA
    Langmuir; 2005 Jul; 21(15):6979-86. PubMed ID: 16008412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition imaging and force spectroscopy of single biomolecules.
    Kienberger F; Ebner A; Gruber HJ; Hinterdorfer P
    Acc Chem Res; 2006 Jan; 39(1):29-36. PubMed ID: 16411737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing ligand-receptor bonds in physiologically relevant conditions using AFM.
    Lo Giudice C; Dumitru AC; Alsteens D
    Anal Bioanal Chem; 2019 Oct; 411(25):6549-6559. PubMed ID: 31410537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and localization of single molecular recognition events using atomic force microscopy.
    Hinterdorfer P; Dufrêne YF
    Nat Methods; 2006 May; 3(5):347-55. PubMed ID: 16628204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.
    Senapati S; Lindsay S
    Acc Chem Res; 2016 Mar; 49(3):503-10. PubMed ID: 26934674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFM for nanoscale microbe analysis.
    Dufrêne YF
    Analyst; 2008 Mar; 133(3):297-301. PubMed ID: 18299742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM.
    Delguste M; Koehler M; Alsteens D
    Methods Mol Biol; 2018; 1814():483-514. PubMed ID: 29956251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NTA-His6 bond is strong enough for AFM single-molecular recognition studies.
    Verbelen C; Gruber HJ; Dufrêne YF
    J Mol Recognit; 2007; 20(6):490-4. PubMed ID: 17712775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction.
    Lee CK; Wang YM; Huang LS; Lin S
    Micron; 2007; 38(5):446-61. PubMed ID: 17015017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting Ligand-Binding Events and Free Energy Landscape while Imaging Membrane Receptors at Subnanometer Resolution.
    Pfreundschuh M; Harder D; Ucurum Z; Fotiadis D; Müller DJ
    Nano Lett; 2017 May; 17(5):3261-3269. PubMed ID: 28361535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of ligand-receptor interactions in cells by atomic force microscopy.
    Horton M; Charras G; Lehenkari P
    J Recept Signal Transduct Res; 2002; 22(1-4):169-90. PubMed ID: 12503614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of atomic force microscopy for characteristics of single intermolecular interactions.
    Safenkova IV; Zherdev AV; Dzantievf BB
    Biochemistry (Mosc); 2012 Dec; 77(13):1536-52. PubMed ID: 23379527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands.
    Whited AM; Park PS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):56-68. PubMed ID: 23603221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.