These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 26561160)

  • 1. Tweezers controlled resonator.
    Kaminski S; Martin LL; Carmon T
    Opt Express; 2015 Nov; 23(22):28914-9. PubMed ID: 26561160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-induced tunable dual-bottle-shaped optical microresonator.
    Qin H; Yin Y; Ding M
    Opt Lett; 2019 Dec; 44(24):6017-6020. PubMed ID: 32628208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification of optical activity in a fiber loop resonator.
    Alexeyev CN; Barshak EV; Lapin BP; Vikulin DV; Yavorsky MA
    Appl Opt; 2020 Nov; 59(32):10160-10167. PubMed ID: 33175793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator.
    Wang H; Lan X; Huang J; Yuan L; Kim CW; Xiao H
    Opt Express; 2013 Jul; 21(13):15834-9. PubMed ID: 23842369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode spectrum and temporal soliton formation in optical microresonators.
    Herr T; Brasch V; Jost JD; Mirgorodskiy I; Lihachev G; Gorodetsky ML; Kippenberg TJ
    Phys Rev Lett; 2014 Sep; 113(12):123901. PubMed ID: 25279630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules.
    Beck T; Schloer S; Grossmann T; Mappes T; Kalt H
    Opt Express; 2012 Sep; 20(20):22012-7. PubMed ID: 23037351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.
    Wuttke C; Becker M; Brückner S; Rothhardt M; Rauschenbeutel A
    Opt Lett; 2012 Jun; 37(11):1949-51. PubMed ID: 22660083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Packaged, high-Q, microsphere-resonator-based add-drop filter.
    Wang P; Ding M; Murugan GS; Bo L; Guan C; Semenova Y; Wu Q; Farrell G; Brambilla G
    Opt Lett; 2014 Sep; 39(17):5208-11. PubMed ID: 25166111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and application of a non-contact double-tapered optical fiber tweezers.
    Liu ZL; Liu YX; Tang Y; Zhang N; Wu FP; Zhang B
    Opt Express; 2017 Sep; 25(19):22480-22489. PubMed ID: 29041557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical capsule and tweezer array for molecular motor use.
    Yupapin PP; Kulsirirat K; Techithdeera W
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):222-7. PubMed ID: 23955778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-input spherical microbubble resonator.
    Watkins A; Ward J; Wu Y; Chormaic SN
    Opt Lett; 2011 Jun; 36(11):2113-5. PubMed ID: 21633466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Array of piezoelectric lateral electric field excited resonators.
    Borodina IA; Zaitsev BD; Teplykh AA; Shikhabudinov AM; Kuznetsova IE
    Ultrasonics; 2015 Sep; 62():200-2. PubMed ID: 26060097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators.
    Sumetsky M; Abedin K; DiGiovanni DJ; Dulashko Y; Fini JM; Monberg E
    Opt Lett; 2012 Mar; 37(6):990-2. PubMed ID: 22446200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.
    Liu Z; Wang L; Liang P; Zhang Y; Yang J; Yuan L
    Opt Lett; 2013 Jul; 38(14):2617-20. PubMed ID: 23939128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators.
    Liu HC; Yariv A
    Opt Express; 2012 Apr; 20(8):9249-63. PubMed ID: 22513637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics.
    Spillane SM; Kippenberg TJ; Painter OJ; Vahala KJ
    Phys Rev Lett; 2003 Jul; 91(4):043902. PubMed ID: 12906659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment.
    Gong Y; Ye AY; Wu Y; Rao YJ; Yao Y; Xiao S
    Opt Express; 2013 Jul; 21(13):16181-90. PubMed ID: 23842403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.