These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26561335)

  • 1. DNA Triplexes That Bind Several Cofactor Molecules.
    Vollmer S; Richert C
    Chemistry; 2015 Dec; 21(51):18613-22. PubMed ID: 26561335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of preorganization on the affinity of synthetic DNA binding motifs for nucleotide ligands.
    Vollmer S; Richert C
    Org Biomol Chem; 2015 May; 13(20):5734-42. PubMed ID: 25902412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning DNA Binding Motifs into a Material for Flow Cells.
    Feldner T; Wolfrum M; Richert C
    Chemistry; 2019 Dec; 25(67):15288-15294. PubMed ID: 31483908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding cofactors with triplex-based DNA motifs.
    Kröner C; Göckel A; Liu W; Richert C
    Chemistry; 2013 Nov; 19(47):15879-87. PubMed ID: 24194407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Triplexes That Bind Several Cofactor Molecules.
    Vollmer S; Richert C
    Chemistry; 2015 Dec; 21(51):18493. PubMed ID: 26534779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed nucleotide binding motifs.
    Kröner C; Röthlingshöfer M; Richert C
    J Org Chem; 2011 Apr; 76(8):2933-6. PubMed ID: 21413744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary binding sites for triplex-forming oligonucleotides containing bulges, loops, and mismatches in the third strand.
    Fox KR; Flashman E; Gowers D
    Biochemistry; 2000 Jun; 39(22):6714-25. PubMed ID: 10828990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes.
    Kandimalla ER; Manning A; Agrawal S
    J Biomol Struct Dyn; 1996 Aug; 14(1):79-90. PubMed ID: 8877564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives.
    Aviñó A; Cubero E; González C; Eritja R; Orozco M
    J Am Chem Soc; 2003 Dec; 125(51):16127-38. PubMed ID: 14678005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic study of the binding of triplex-forming oligonucleotides containing partial cationic modifications to double-stranded DNA.
    Hari Y; Ijitsu S; Akabane-Nakata M; Yoshida T; Obika S
    Bioorg Med Chem Lett; 2014 Jul; 24(14):3046-9. PubMed ID: 24865415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and calorimetric studies on the triplex formation with oligonucleotide-ligand conjugates.
    Eick A; Riechert-Krause F; Weisz K
    Bioconjug Chem; 2010 Jun; 21(6):1105-14. PubMed ID: 20481559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of stable DNA triple helices within the human bcr promoter at a critical oligopurine target interrupted in the middle by two adjacent pyrimidines.
    Xodo LE; Manzini G; Quadrifoglio F
    Antisense Nucleic Acid Drug Dev; 1998 Dec; 8(6):477-88. PubMed ID: 9918112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives.
    Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF
    Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH.
    Rusling DA; Le Strat L; Powers VE; Broughton-Head VJ; Booth J; Lack O; Brown T; Fox KR
    FEBS Lett; 2005 Dec; 579(29):6616-20. PubMed ID: 16293248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrimidine-purine-pyrimidine triplex DNA stabilization in the presence of tetramine and pentamine analogues of spermine.
    Thomas TJ; Ashley C; Thomas T; Shirahata A; Sigal LH; Lee JS
    Biochem Cell Biol; 1997; 75(3):207-15. PubMed ID: 9404640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pyrimidine oligodeoxyxylonucleotides form triplexes with purine DNA in neutral media].
    Ivanov SA; Alekseev IaI; Gottikh MB
    Mol Biol (Mosk); 2002; 36(1):160-70. PubMed ID: 11862707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed inhibition of DNA replication by triple helix formation.
    Diviacco S; Rapozzi V; Xodo L; Helene C; Quadrifoglio F; Giovannangeli C
    FASEB J; 2001 Dec; 15(14):2660-8. PubMed ID: 11726542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and duplex DNA recognition studies of oligonucleotides containing a ureido isoindolin-1-one homo-N-nucleoside. A comparison of host-guest and DNA recognition studies.
    Mertz E; Mattei S; Zimmerman SC
    Bioorg Med Chem; 2004 Mar; 12(6):1517-26. PubMed ID: 15018925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propynyl groups in duplex, hairpin and triplex DNA: 7-deazapurines and 9-deazapurines.
    Seela F; Shaikh KI; Budow S; Jawalekar AM
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):851-4. PubMed ID: 16248048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.