BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 26561447)

  • 1. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.
    Wang X; Qu R; Liu J; Wei Z; Wang L; Yang S; Huang Q; Wang Z
    Environ Pollut; 2016 Jan; 208(Pt B):732-8. PubMed ID: 26561447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Cd toxicity to Daphnia magna in the mixture of multi-walled carbon nanotubes and kaolinite.
    Lee S; Kim J; Kim I; Jang M; Hwang Y; Kim SD
    Environ Geochem Health; 2019 Oct; 41(5):2011-2021. PubMed ID: 30778789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to Daphnia magna: The role of certain arsenic species.
    Wang X; Qu R; Allam AA; Ajarem J; Wei Z; Wang Z
    Environ Toxicol Chem; 2016 Jul; 35(7):1852-9. PubMed ID: 26681408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of hydroxylated multiwalled carbon nanotubes on the toxicity of nickel to Daphnia magna under different pH levels.
    Wang C; Wei Z; Feng M; Wang L; Wang Z
    Environ Toxicol Chem; 2014 Nov; 33(11):2522-8. PubMed ID: 25088764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna.
    Jang MH; Hwang YS
    PLoS One; 2018; 13(3):e0194935. PubMed ID: 29596457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure.
    Liu J; Wang WX
    Environ Toxicol Chem; 2015 Dec; 34(12):2824-32. PubMed ID: 26094590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to Daphnia magna.
    Qin L; Huang Q; Wei Z; Wang L; Wang Z
    Environ Toxicol Pharmacol; 2014 Jul; 38(1):199-204. PubMed ID: 24956399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenanthrene Bioavailability and Toxicity to Daphnia magna in the Presence of Carbon Nanotubes with Different Physicochemical Properties.
    Zindler F; Glomstad B; Altin D; Liu J; Jenssen BM; Booth AM
    Environ Sci Technol; 2016 Nov; 50(22):12446-12454. PubMed ID: 27700057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes.
    Qu R; Wang X; Wang Z; Wei Z; Wang L
    J Hazard Mater; 2014 Jun; 275():89-98. PubMed ID: 24857893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems--A review.
    Boncel S; Kyzioł-Komosińska J; Krzyżewska I; Czupioł J
    Chemosphere; 2015 Oct; 136():211-21. PubMed ID: 26022284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna.
    Gao M; Zhang Z; Lv M; Song W; Lv Y
    Ecotoxicol Environ Saf; 2018 Feb; 148():261-268. PubMed ID: 29069613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium.
    Wang C; Liu H; Chen J; Tian Y; Shi J; Li D; Guo C; Ma Q
    J Hazard Mater; 2014 Jun; 274():404-12. PubMed ID: 24806869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna.
    Yu ZG; Wang WX
    Water Res; 2013 Aug; 47(12):4179-87. PubMed ID: 23582308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna.
    Petersen EJ; Pinto RA; Mai DJ; Landrum PF; Weber WJ
    Environ Sci Technol; 2011 Feb; 45(3):1133-8. PubMed ID: 21182278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersibility and dispersion stability of carbon nanotubes in synthetic aquatic growth media and natural freshwater.
    Glomstad B; Zindler F; Jenssen BM; Booth AM
    Chemosphere; 2018 Jun; 201():269-277. PubMed ID: 29525654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes.
    Ding H; Li X; Wang J; Zhang X; Chen C
    J Environ Sci (China); 2016 May; 43():187-198. PubMed ID: 27155424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.
    Wang X; Qu R; Huang Q; Wei Z; Wang Z
    Aquat Toxicol; 2015 Mar; 160():142-50. PubMed ID: 25625523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium.
    Rong H; Wang C; Yu X; Fan J; Jiang P; Wang Y; Gan X; Wang Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():616-623. PubMed ID: 29933131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes.
    Yan L; Feng M; Liu J; Wang L; Wang Z
    Ecotoxicol Environ Saf; 2016 Mar; 125():61-71. PubMed ID: 26655435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide.
    Cano AM; Maul JD; Saed M; Shah SA; Green MJ; Cañas-Carrell JE
    Environ Toxicol Chem; 2017 Aug; 36(8):2199-2204. PubMed ID: 28160491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.