These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 26561447)
1. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. Wang X; Qu R; Liu J; Wei Z; Wang L; Yang S; Huang Q; Wang Z Environ Pollut; 2016 Jan; 208(Pt B):732-8. PubMed ID: 26561447 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Cd toxicity to Daphnia magna in the mixture of multi-walled carbon nanotubes and kaolinite. Lee S; Kim J; Kim I; Jang M; Hwang Y; Kim SD Environ Geochem Health; 2019 Oct; 41(5):2011-2021. PubMed ID: 30778789 [TBL] [Abstract][Full Text] [Related]
3. Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to Daphnia magna: The role of certain arsenic species. Wang X; Qu R; Allam AA; Ajarem J; Wei Z; Wang Z Environ Toxicol Chem; 2016 Jul; 35(7):1852-9. PubMed ID: 26681408 [TBL] [Abstract][Full Text] [Related]
4. The effects of hydroxylated multiwalled carbon nanotubes on the toxicity of nickel to Daphnia magna under different pH levels. Wang C; Wei Z; Feng M; Wang L; Wang Z Environ Toxicol Chem; 2014 Nov; 33(11):2522-8. PubMed ID: 25088764 [TBL] [Abstract][Full Text] [Related]
5. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. Jang MH; Hwang YS PLoS One; 2018; 13(3):e0194935. PubMed ID: 29596457 [TBL] [Abstract][Full Text] [Related]
6. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure. Liu J; Wang WX Environ Toxicol Chem; 2015 Dec; 34(12):2824-32. PubMed ID: 26094590 [TBL] [Abstract][Full Text] [Related]
7. The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to Daphnia magna. Qin L; Huang Q; Wei Z; Wang L; Wang Z Environ Toxicol Pharmacol; 2014 Jul; 38(1):199-204. PubMed ID: 24956399 [TBL] [Abstract][Full Text] [Related]
8. Phenanthrene Bioavailability and Toxicity to Daphnia magna in the Presence of Carbon Nanotubes with Different Physicochemical Properties. Zindler F; Glomstad B; Altin D; Liu J; Jenssen BM; Booth AM Environ Sci Technol; 2016 Nov; 50(22):12446-12454. PubMed ID: 27700057 [TBL] [Abstract][Full Text] [Related]
9. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. Qu R; Wang X; Wang Z; Wei Z; Wang L J Hazard Mater; 2014 Jun; 275():89-98. PubMed ID: 24857893 [TBL] [Abstract][Full Text] [Related]
10. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems--A review. Boncel S; Kyzioł-Komosińska J; Krzyżewska I; Czupioł J Chemosphere; 2015 Oct; 136():211-21. PubMed ID: 26022284 [TBL] [Abstract][Full Text] [Related]
11. Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Gao M; Zhang Z; Lv M; Song W; Lv Y Ecotoxicol Environ Saf; 2018 Feb; 148():261-268. PubMed ID: 29069613 [TBL] [Abstract][Full Text] [Related]
12. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. Wang C; Liu H; Chen J; Tian Y; Shi J; Li D; Guo C; Ma Q J Hazard Mater; 2014 Jun; 274():404-12. PubMed ID: 24806869 [TBL] [Abstract][Full Text] [Related]
13. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna. Yu ZG; Wang WX Water Res; 2013 Aug; 47(12):4179-87. PubMed ID: 23582308 [TBL] [Abstract][Full Text] [Related]
14. Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Petersen EJ; Pinto RA; Mai DJ; Landrum PF; Weber WJ Environ Sci Technol; 2011 Feb; 45(3):1133-8. PubMed ID: 21182278 [TBL] [Abstract][Full Text] [Related]
15. Dispersibility and dispersion stability of carbon nanotubes in synthetic aquatic growth media and natural freshwater. Glomstad B; Zindler F; Jenssen BM; Booth AM Chemosphere; 2018 Jun; 201():269-277. PubMed ID: 29525654 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes. Ding H; Li X; Wang J; Zhang X; Chen C J Environ Sci (China); 2016 May; 43():187-198. PubMed ID: 27155424 [TBL] [Abstract][Full Text] [Related]
17. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. Wang X; Qu R; Huang Q; Wei Z; Wang Z Aquat Toxicol; 2015 Mar; 160():142-50. PubMed ID: 25625523 [TBL] [Abstract][Full Text] [Related]
18. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium. Rong H; Wang C; Yu X; Fan J; Jiang P; Wang Y; Gan X; Wang Y Ecotoxicol Environ Saf; 2018 Oct; 161():616-623. PubMed ID: 29933131 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes. Yan L; Feng M; Liu J; Wang L; Wang Z Ecotoxicol Environ Saf; 2016 Mar; 125():61-71. PubMed ID: 26655435 [TBL] [Abstract][Full Text] [Related]
20. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide. Cano AM; Maul JD; Saed M; Shah SA; Green MJ; Cañas-Carrell JE Environ Toxicol Chem; 2017 Aug; 36(8):2199-2204. PubMed ID: 28160491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]