BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26561456)

  • 1. Activity of zero-valent sulfur in sulfidic natural waters.
    Helz GR
    Geochem Trans; 2014; 15():13. PubMed ID: 26561456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs.
    Kamyshny A; Druschel G; Mansaray ZF; Farquhar J
    Geochem Trans; 2014; 15():7. PubMed ID: 24959098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-valent sulfur and metal speciation in sediment porewaters of freshwater lakes.
    Wang F; Tessier A
    Environ Sci Technol; 2009 Oct; 43(19):7252-7. PubMed ID: 19848130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common mechanism for rapid transfer of zero-valent sulfur between microbial cells.
    Wang T; Zhong G; Liu H; Liu H; Xia Y; Xun L
    Sci Total Environ; 2023 Sep; 891():164461. PubMed ID: 37247735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial impact on polysulfide dynamics in the environment.
    Findlay AJ
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microorganisms uptake zero-valent sulfur via membrane lipid dissolution of octasulfur and intracellular solubilization as persulfide.
    Wang T; Li X; Liu H; Liu H; Xia Y; Xun L
    Sci Total Environ; 2024 Apr; 922():170504. PubMed ID: 38307292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury methylation by Desulfovibrio desulfuricans ND132 in the presence of polysulfides.
    Jay JA; Murray KJ; Gilmour CC; Mason RP; Morel FM; Roberts AL; Hemond HF
    Appl Environ Microbiol; 2002 Nov; 68(11):5741-5. PubMed ID: 12406773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments.
    Couture RM; Van Cappellen P
    J Hazard Mater; 2011 May; 189(3):647-52. PubMed ID: 21382662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The balneotherapeutic components of sulfide-containing mineral waters].
    Khutoryansky VA; Gorshkov AG
    Vopr Kurortol Fizioter Lech Fiz Kult; 2015; 92(6):51-55. PubMed ID: 26841531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic polysulfides' quantitation by methyl iodide derivatization: dimethylpolysulfide formation potential.
    Goifman A; Ryzkov D; Gun J; Kamyshny A; Modestov AD; Lev O
    Water Sci Technol; 2004; 49(9):179-84. PubMed ID: 15237623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilities of thiomolybdate complexes of iron; implications for retention of essential trace elements (Fe, Cu, Mo) in sulfidic waters.
    Helz GR; Erickson BE; Vorlicek TP
    Metallomics; 2014 Jun; 6(6):1131-40. PubMed ID: 24226648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium distribution of polysulfide ions in aqueous solutions at 25 degrees C: a new approach for the study of polysulfides' equilibria.
    Kamyshny A; Goifman A; Gun J; Rizkov D; Lev O
    Environ Sci Technol; 2004 Dec; 38(24):6633-44. PubMed ID: 15669322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfidization of Organic Freshwater Flocs from a Minerotrophic Peatland: Speciation Changes of Iron, Sulfur, and Arsenic.
    ThomasArrigo LK; Mikutta C; Lohmayer R; Planer-Friedrich B; Kretzschmar R
    Environ Sci Technol; 2016 Apr; 50(7):3607-16. PubMed ID: 26967672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic Modeling of the Solubility and Chemical Speciation of Mercury and Methylmercury Driven by Organic Thiols and Micromolar Sulfide Concentrations in Boreal Wetland Soils.
    Liem-Nguyen V; Skyllberg U; Björn E
    Environ Sci Technol; 2017 Apr; 51(7):3678-3686. PubMed ID: 28248107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High sulfide production induced by algae decomposition and its potential stimulation to phosphorus mobility in sediment.
    Zhao Y; Zhang Z; Wang G; Li X; Ma J; Chen S; Deng H; Annalisa OH
    Sci Total Environ; 2019 Feb; 650(Pt 1):163-172. PubMed ID: 30196216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments.
    Drott A; Lambertsson L; Björn E; Skyllberg U
    Environ Sci Technol; 2007 Apr; 41(7):2270-6. PubMed ID: 17438774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Dependence of Reduced Sulfur in Everglades Dissolved Organic Matter Controlled by Sulfate Enrichment.
    Poulin BA; Ryan JN; Nagy KL; Stubbins A; Dittmar T; Orem W; Krabbenhoft DP; Aiken GR
    Environ Sci Technol; 2017 Apr; 51(7):3630-3639. PubMed ID: 28248098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations.
    Knossow N; Blonder B; Eckert W; Turchyn AV; Antler G; Kamyshny A
    Geochem Trans; 2015; 16():7. PubMed ID: 26140024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park.
    Macur RE; Jay ZJ; Taylor WP; Kozubal MA; Kocar BD; Inskeep WP
    Geobiology; 2013 Jan; 11(1):86-99. PubMed ID: 23231658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.
    Miller CL; Mason RP; Gilmour CC; Heyes A
    Environ Toxicol Chem; 2007 Apr; 26(4):624-33. PubMed ID: 17447546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.