BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26561469)

  • 21. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia.
    Wang Q; Qiu H; Jiang H; Wu L; Dong S; Pan J; Wang W; Ping N; Xia J; Sun A; Wu D; Xue Y; Drexler HG; Macleod RA; Chen S
    Haematologica; 2011 Dec; 96(12):1808-14. PubMed ID: 21880637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pan-cancer analysis of gain-of-functional mutations to identify the common oncogenic signatures in multiple cancers.
    Wee Y; Liu Y; Bhyan SB; Lu J; Zhao M
    Gene; 2019 May; 697():57-66. PubMed ID: 30796966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathogenesis of Börjeson-Forssman-Lehmann syndrome: Insights from PHF6 function.
    Jahani-Asl A; Cheng C; Zhang C; Bonni A
    Neurobiol Dis; 2016 Dec; 96():227-235. PubMed ID: 27633282
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Wendorff AA; Quinn SA; Rashkovan M; Madubata CJ; Ambesi-Impiombato A; Litzow MR; Tallman MS; Paietta E; Paganin M; Basso G; Gastier-Foster JM; Loh ML; Rabadan R; Van Vlierberghe P; Ferrando AA
    Cancer Discov; 2019 Mar; 9(3):436-451. PubMed ID: 30567843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic reversal of hematopoietic stem cell aging in Phf6-knockout mice.
    Wendorff AA; Aidan Quinn S; Alvarez S; Brown JA; Biswas M; Gunning T; Palomero T; Ferrando AA
    Nat Aging; 2022 Nov; 2(11):1008-1023. PubMed ID: 37118089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CHD4 as an important mediator in regulating the malignant behaviors of colorectal cancer.
    Chang CL; Huang CR; Chang SJ; Wu CC; Chen HH; Luo CW; Yip HK
    Int J Biol Sci; 2021; 17(7):1660-1670. PubMed ID: 33994851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth.
    Meacham CE; Lawton LN; Soto-Feliciano YM; Pritchard JR; Joughin BA; Ehrenberger T; Fenouille N; Zuber J; Williams RT; Young RA; Hemann MT
    Genes Dev; 2015 Mar; 29(5):483-8. PubMed ID: 25737277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis.
    Wang J; Leung JW; Gong Z; Feng L; Shi X; Chen J
    J Biol Chem; 2013 Feb; 288(5):3174-83. PubMed ID: 23229552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia.
    McRae HM; Garnham AL; Hu Y; Witkowski MT; Corbett MA; Dixon MP; May RE; Sheikh BN; Chiang W; Kueh AJ; Nguyen TA; Man K; Gloury R; Aubrey BJ; Policheni A; Di Rago L; Alexander WS; Gray DHD; Strasser A; Hawkins ED; Wilcox S; Gécz J; Kallies A; McCormack MP; Smyth GK; Voss AK; Thomas T
    Blood; 2019 Apr; 133(16):1729-1741. PubMed ID: 30755422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. p66Alpha-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex.
    Gnanapragasam MN; Scarsdale JN; Amaya ML; Webb HD; Desai MA; Walavalkar NM; Wang SZ; Zu Zhu S; Ginder GD; Williams DC
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7487-92. PubMed ID: 21490301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic pathway analysis reveals that EZH2 and HDAC4 represent mutually exclusive epigenetic pathways across human cancers.
    Cohen AL; Piccolo SR; Cheng L; Soldi R; Han B; Johnson WE; Bild AH
    BMC Med Genomics; 2013 Sep; 6():35. PubMed ID: 24079712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation.
    Zhang Y; Ng HH; Erdjument-Bromage H; Tempst P; Bird A; Reinberg D
    Genes Dev; 1999 Aug; 13(15):1924-35. PubMed ID: 10444591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PHF6 maintains acute myeloid leukemia via regulating NF-κB signaling pathway.
    Hou S; Wang X; Guo T; Lan Y; Yuan S; Yang S; Zhao F; Fang A; Liu N; Yang W; Chu Y; Jiang E; Cheng T; Sun X; Yuan W
    Leukemia; 2023 Aug; 37(8):1626-1637. PubMed ID: 37393343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PAX9 Determines Epigenetic State Transition and Cell Fate in Cancer.
    Zhao Z; Szczepanski AP; Tsuboyama N; Abdala-Valencia H; Goo YA; Singer BD; Bartom ET; Yue F; Wang L
    Cancer Res; 2021 Sep; 81(18):4696-4708. PubMed ID: 34341073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells.
    Miyagi S; Sroczynska P; Kato Y; Nakajima-Takagi Y; Oshima M; Rizq O; Takayama N; Saraya A; Mizuno S; Sugiyama F; Takahashi S; Matsuzaki Y; Christensen J; Helin K; Iwama A
    Blood; 2019 Jun; 133(23):2495-2506. PubMed ID: 30917958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks.
    Morey L; Brenner C; Fazi F; Villa R; Gutierrez A; Buschbeck M; Nervi C; Minucci S; Fuks F; Di Croce L
    Mol Cell Biol; 2008 Oct; 28(19):5912-23. PubMed ID: 18644863
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Xiao W; Bharadwaj M; Levine M; Farnhoud N; Pastore F; Getta BM; Hultquist A; Famulare C; Medina JS; Patel MA; Gao Q; Lewis N; Pichardo J; Baik J; Shaffer B; Giralt S; Rampal R; Devlin S; Cimera R; Zhang Y; E Arcila M; Papaemmanuil E; Levine RL; Roshal M
    Blood Adv; 2018 Dec; 2(23):3526-3539. PubMed ID: 30530780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined genomic and proteomic approaches reveal DNA binding sites and interaction partners of TBX2 in the developing lung.
    Lüdtke TH; Wojahn I; Kleppa MJ; Schierstaedt J; Christoffels VM; Künzler P; Kispert A
    Respir Res; 2021 Mar; 22(1):85. PubMed ID: 33731112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling.
    Wieczorek D; Bögershausen N; Beleggia F; Steiner-Haldenstätt S; Pohl E; Li Y; Milz E; Martin M; Thiele H; Altmüller J; Alanay Y; Kayserili H; Klein-Hitpass L; Böhringer S; Wollstein A; Albrecht B; Boduroglu K; Caliebe A; Chrzanowska K; Cogulu O; Cristofoli F; Czeschik JC; Devriendt K; Dotti MT; Elcioglu N; Gener B; Goecke TO; Krajewska-Walasek M; Guillén-Navarro E; Hayek J; Houge G; Kilic E; Simsek-Kiper PÖ; López-González V; Kuechler A; Lyonnet S; Mari F; Marozza A; Mathieu Dramard M; Mikat B; Morin G; Morice-Picard F; Ozkinay F; Rauch A; Renieri A; Tinschert S; Utine GE; Vilain C; Vivarelli R; Zweier C; Nürnberg P; Rahmann S; Vermeesch J; Lüdecke HJ; Zeschnigk M; Wollnik B
    Hum Mol Genet; 2013 Dec; 22(25):5121-35. PubMed ID: 23906836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. T-cell acute lymphoblastic leukemia in association with Börjeson-Forssman-Lehmann syndrome due to a mutation in PHF6.
    Chao MM; Todd MA; Kontny U; Neas K; Sullivan MJ; Hunter AG; Picketts DJ; Kratz CP
    Pediatr Blood Cancer; 2010 Oct; 55(4):722-4. PubMed ID: 20806366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.