These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. CTSS: a robust and efficient method for protein structure alignment based on local geometrical and biological features. Can T; Wang YF Proc IEEE Comput Soc Bioinform Conf; 2003; 2():169-79. PubMed ID: 16452791 [TBL] [Abstract][Full Text] [Related]
4. A web-based three-dimensional protein retrieval system by matching visual similarity. Yeh JS; Chen DY; Chen BY; Ouhyoung M Bioinformatics; 2005 Jul; 21(13):3056-7. PubMed ID: 15840701 [TBL] [Abstract][Full Text] [Related]
5. Protein structure alignment and fast similarity search using local shape signatures. Can T; Wang YF J Bioinform Comput Biol; 2004 Mar; 2(1):215-39. PubMed ID: 15272439 [TBL] [Abstract][Full Text] [Related]
7. Three dimensional shape comparison of flexible proteins using the local-diameter descriptor. Fang Y; Liu YS; Ramani K BMC Struct Biol; 2009 May; 9():29. PubMed ID: 19435524 [TBL] [Abstract][Full Text] [Related]
8. On distance and similarity in fold space. Sippl MJ Bioinformatics; 2008 Mar; 24(6):872-3. PubMed ID: 18227113 [TBL] [Abstract][Full Text] [Related]
9. Prediction of protein structure classes with flexible neural tree. Bao W; Chen Y; Wang D Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096 [TBL] [Abstract][Full Text] [Related]
10. Protein structure-structure alignment with discrete Fréchet distance. Jiang M; Xu Y; Zhu B J Bioinform Comput Biol; 2008 Feb; 6(1):51-64. PubMed ID: 18324745 [TBL] [Abstract][Full Text] [Related]
11. Exploring protein architecture using 3D shape-based signatures. Paquet E; Viktor HL Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1204-8. PubMed ID: 18002179 [TBL] [Abstract][Full Text] [Related]
12. Generation of 3D templates of active sites of proteins with rigid prosthetic groups. Nebel JC Bioinformatics; 2006 May; 22(10):1183-9. PubMed ID: 16473871 [TBL] [Abstract][Full Text] [Related]
13. Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons. Morris RJ; Najmanovich RJ; Kahraman A; Thornton JM Bioinformatics; 2005 May; 21(10):2347-55. PubMed ID: 15728116 [TBL] [Abstract][Full Text] [Related]
14. Representing and comparing protein structures as paths in three-dimensional space. Zhi D; Krishna SS; Cao H; Pevzner P; Godzik A BMC Bioinformatics; 2006 Oct; 7():460. PubMed ID: 17052359 [TBL] [Abstract][Full Text] [Related]
15. A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites. Xie L; Bourne PE BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S9. PubMed ID: 17570152 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional protein shape similarity analysis based on hybrid features. Li Z; Yu J; Hu H; Ji S Gene; 2018 Jul; 663():138-147. PubMed ID: 29684483 [TBL] [Abstract][Full Text] [Related]
17. IDSS: deformation invariant signatures for molecular shape comparison. Liu YS; Fang Y; Ramani K BMC Bioinformatics; 2009 May; 10():157. PubMed ID: 19463181 [TBL] [Abstract][Full Text] [Related]
18. Using diffusion distances for flexible molecular shape comparison. Liu YS; Li Q; Zheng GQ; Ramani K; Benjamin W BMC Bioinformatics; 2010 Sep; 11():480. PubMed ID: 20868474 [TBL] [Abstract][Full Text] [Related]
19. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
20. Using an alignment of fragment strings for comparing protein structures. Friedberg I; Harder T; Kolodny R; Sitbon E; Li Z; Godzik A Bioinformatics; 2007 Jan; 23(2):e219-24. PubMed ID: 17237095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]