These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26561602)

  • 1. Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.
    Hoseini MS; Wessel R
    J Neurophysiol; 2016 Jan; 115(1):457-69. PubMed ID: 26561602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
    Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA
    J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.
    Hayut I; Fanselow EE; Connors BW; Golomb D
    PLoS Comput Biol; 2011 Oct; 7(10):e1002248. PubMed ID: 22046121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states.
    Susin E; Destexhe A
    PLoS Comput Biol; 2021 Sep; 17(9):e1009416. PubMed ID: 34529655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons.
    Vierling-Claassen D; Cardin JA; Moore CI; Jones SR
    Front Hum Neurosci; 2010; 4():198. PubMed ID: 21152338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal Local Field Potential Signature of the Single-Axon Monosynaptic Thalamocortical Connection.
    Hagen E; Fossum JC; Pettersen KH; Alonso JM; Swadlow HA; Einevoll GT
    J Neurosci; 2017 May; 37(20):5123-5143. PubMed ID: 28432143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.
    Andersson R; Johnston A; Fisahn A
    PLoS One; 2012; 7(7):e40906. PubMed ID: 22815864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.
    Destexhe A
    J Comput Neurosci; 2009 Dec; 27(3):493-506. PubMed ID: 19499317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas.
    Ardid S; Wang XJ; Gomez-Cabrero D; Compte A
    J Neurosci; 2010 Feb; 30(8):2856-70. PubMed ID: 20181583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats.
    Ushimaru M; Kawaguchi Y
    J Neurosci; 2015 Aug; 35(34):11988-2001. PubMed ID: 26311779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mean-field model of gamma-frequency oscillations in networks of excitatory and inhibitory neurons.
    Tahvili F; Destexhe A
    J Comput Neurosci; 2024 May; 52(2):165-181. PubMed ID: 38512693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex.
    Rule ME; Vargas-Irwin CE; Donoghue JP; Truccolo W
    J Neurophysiol; 2017 Apr; 117(4):1524-1543. PubMed ID: 28100654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation.
    Viriyopase A; Memmesheimer RM; Gielen S
    Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types.
    Tomov P; Pena RF; Zaks MA; Roque AC
    Front Comput Neurosci; 2014; 8():103. PubMed ID: 25228879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulatory effects of inhibition on persistent activity in a cortical microcircuit model.
    Konstantoudaki X; Papoutsi A; Chalkiadaki K; Poirazi P; Sidiropoulou K
    Front Neural Circuits; 2014; 8():7. PubMed ID: 24550786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network activity and spike discharge oscillations in cortical slice cultures from neonatal rat.
    Czarnecki A; Tscherter A; Streit J
    Eur J Neurosci; 2012 Feb; 35(3):375-88. PubMed ID: 22276985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional properties and short-term dynamics of unidirectional and reciprocal synaptic connections between layer 2/3 pyramidal cells and fast-spiking interneurons in juvenile rat prefrontal cortex.
    Zaitsev AV; Lewis DA
    Eur J Neurosci; 2013 Oct; 38(7):2988-98. PubMed ID: 23834038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Afferent inputs to cortical fast-spiking interneurons organize pyramidal cell network oscillations at high-gamma frequencies (60-200 Hz).
    Suffczynski P; Crone NE; Franaszczuk PJ
    J Neurophysiol; 2014 Dec; 112(11):3001-11. PubMed ID: 25210164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
    Brunel N
    J Comput Neurosci; 2000; 8(3):183-208. PubMed ID: 10809012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.