These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 26562080)
1. Interactome analysis of gene expression profile reveals potential novel key transcriptional regulators of skin pathology in vitiligo. Dey-Rao R; Sinha AA Genes Immun; 2016; 17(1):30-45. PubMed ID: 26562080 [TBL] [Abstract][Full Text] [Related]
2. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets. Dey-Rao R; Sinha AA BMC Genomics; 2017 Jan; 18(1):109. PubMed ID: 28129744 [TBL] [Abstract][Full Text] [Related]
3. The genetics of generalized vitiligo. Spritz RA Curr Dir Autoimmun; 2008; 10():244-57. PubMed ID: 18460890 [TBL] [Abstract][Full Text] [Related]
4. The genetics of generalized vitiligo and associated autoimmune diseases. Spritz RA Pigment Cell Res; 2007 Aug; 20(4):271-8. PubMed ID: 17630960 [TBL] [Abstract][Full Text] [Related]
5. A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia. Dey-Rao R; Sinha AA Genomics; 2017 Jul; 109(3-4):165-176. PubMed ID: 28263792 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Jin Y; Andersen G; Yorgov D; Ferrara TM; Ben S; Brownson KM; Holland PJ; Birlea SA; Siebert J; Hartmann A; Lienert A; van Geel N; Lambert J; Luiten RM; Wolkerstorfer A; Wietze van der Veen JP; Bennett DC; Taïeb A; Ezzedine K; Kemp EH; Gawkrodger DJ; Weetman AP; Kõks S; Prans E; Kingo K; Karelson M; Wallace MR; McCormack WT; Overbeck A; Moretti S; Colucci R; Picardo M; Silverberg NB; Olsson M; Valle Y; Korobko I; Böhm M; Lim HW; Hamzavi I; Zhou L; Mi QS; Fain PR; Santorico SA; Spritz RA Nat Genet; 2016 Nov; 48(11):1418-1424. PubMed ID: 27723757 [TBL] [Abstract][Full Text] [Related]
7. Cytokines: the yin and yang of vitiligo pathogenesis. Singh M; Kotnis A; Jadeja SD; Mondal A; Mansuri MS; Begum R Expert Rev Clin Immunol; 2019 Feb; 15(2):177-188. PubMed ID: 30462555 [TBL] [Abstract][Full Text] [Related]
8. The changes of gene expression profiling between segmental vitiligo, generalized vitiligo and healthy individual. Wang P; Li Y; Nie H; Zhang X; Shao Q; Hou X; Xu W; Hong W; Xu A J Dermatol Sci; 2016 Oct; 84(1):40-49. PubMed ID: 27470284 [TBL] [Abstract][Full Text] [Related]
9. The genetics of generalized vitiligo and associated autoimmune diseases. Spritz RA J Dermatol Sci; 2006 Jan; 41(1):3-10. PubMed ID: 16289692 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. Yu R; Broady R; Huang Y; Wang Y; Yu J; Gao M; Levings M; Wei S; Zhang S; Xu A; Su M; Dutz J; Zhang X; Zhou Y PLoS One; 2012; 7(12):e51040. PubMed ID: 23251420 [TBL] [Abstract][Full Text] [Related]
11. Family Clustering of Autoimmune Vitiligo Results Principally from Polygenic Inheritance of Common Risk Alleles. Roberts GHL; Paul S; Yorgov D; Santorico SA; Spritz RA Am J Hum Genet; 2019 Aug; 105(2):364-372. PubMed ID: 31327509 [TBL] [Abstract][Full Text] [Related]
12. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Kotobuki Y; Tanemura A; Yang L; Itoi S; Wataya-Kaneda M; Murota H; Fujimoto M; Serada S; Naka T; Katayama I Pigment Cell Melanoma Res; 2012 Mar; 25(2):219-30. PubMed ID: 22136309 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide DNA methylation of lesional and peri-lesional skin in vitiligo: a comparative and integrated analysis of multi-omics in Chinese population. Liu L; Xue Y; Li Y; Chen Y; Pan X; Huang Y; Chen T; Zhong J; Shao X; Pu Y; Chen J Hum Genet; 2024 Feb; 143(2):137-149. PubMed ID: 38182908 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide profiling reveals pervasive transcriptional alterations in fibroblasts derived from lesional skin in vitiligo including a reduced potential to proliferate. Gupta R; Misri R; Gupta A; Chowdhary M; Singh A Exp Dermatol; 2023 Apr; 32(4):331-340. PubMed ID: 36333875 [TBL] [Abstract][Full Text] [Related]
17. Genetic association of NALP1 with generalized vitiligo in Jordanian Arabs. Alkhateeb A; Qarqaz F Arch Dermatol Res; 2010 Oct; 302(8):631-4. PubMed ID: 20574744 [TBL] [Abstract][Full Text] [Related]
18. Discoidin domain receptor-1 as a player in impairment of melanocytes adhesion process in vitiligo. Elgarhy LH; Abdullatif A; Abdelazim R; El-Desouky KI G Ital Dermatol Venereol; 2016 Oct; 151(5):473-9. PubMed ID: 26091274 [TBL] [Abstract][Full Text] [Related]
19. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Laberge G; Mailloux CM; Gowan K; Holland P; Bennett DC; Fain PR; Spritz RA Pigment Cell Res; 2005 Aug; 18(4):300-5. PubMed ID: 16029422 [TBL] [Abstract][Full Text] [Related]
20. New insights into immune mechanisms of vitiligo. Boniface K; Taïeb A; Seneschal J G Ital Dermatol Venereol; 2016 Feb; 151(1):44-54. PubMed ID: 26512930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]