BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26562170)

  • 1. Cerenkov Luminescence Imaging for Accurate Placement of Radioactive Plaques in Episcleral Brachytherapy of Intraocular Tumors.
    Axelsson J; Krohn J
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7362-8. PubMed ID: 26562170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cherenkov Luminescence Imaging for Assessment of Radioactive Plaque Position in Brachytherapy of Uveal Melanoma: An In Vivo Feasibility Study.
    Krohn J; Chen YC; Stabo-Eeg NO; Hamre B
    Transl Vis Sci Technol; 2020 Jun; 9(7):42. PubMed ID: 32832247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-energy CT imaging of orbits during episcleral brachytherapy with Ru-106 plaques: A phantom study on its potential for plaque position verification.
    Perisinakis K; Detorakis ET; Tzedakis A; Liakopoulos DA; Papadaki E; Damilakis J
    Phys Med; 2020 May; 73():1-7. PubMed ID: 32278254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate estimation of dose distributions inside an eye irradiated with 106Ru plaques.
    Brualla L; Sempau J; Zaragoza FJ; Wittig A; Sauerwein W
    Strahlenther Onkol; 2013 Jan; 189(1):68-73. PubMed ID: 23161122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multispectral Cerenkov luminescence tomography for small animal optical imaging.
    Spinelli AE; Kuo C; Rice BW; Calandrino R; Marzola P; Sbarbati A; Boschi F
    Opt Express; 2011 Jun; 19(13):12605-18. PubMed ID: 21716501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent dosimetric assessment of the model EP917 episcleral brachytherapy plaque.
    Aryal P; Molloy JA; Rivard MJ
    Med Phys; 2014 Sep; 41(9):092102. PubMed ID: 25186402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transillumination for accurate placement of radioactive plaques in brachytherapy of choroidal melanoma.
    Krohn J; Seland JH; Monge OR; Rekstad BL
    Am J Ophthalmol; 2001 Sep; 132(3):418-9. PubMed ID: 11530064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved treatment planning and quality assurance process for Collaborative Ocular Melanoma Study eye plaque brachytherapy.
    Weersink RA; Patterson S; Ballantyne H; Di Tomasso A; Borg J; Vitkin A; Rink A; Beiki-Ardakani A
    Brachytherapy; 2019; 18(5):658-667. PubMed ID: 31235445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brachytherapy With 15- Versus 20-mm Ruthenium 106 Plaques Without Verification of Plaque Position Is Associated With Local Tumor Recurrence and Death in Posterior Uveal Melanoma.
    Stålhammar G
    Int J Radiat Oncol Biol Phys; 2023 Dec; 117(5):1125-1137. PubMed ID: 37433377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the actual state of industrial quality assurance procedures with regard to (106)Ru ophthalmic plaques.
    Kaulich TW; Zurheide J; Haug T; Budach W; Nüsslin F; Bamberg M
    Strahlenther Onkol; 2004 Jun; 180(6):358-64. PubMed ID: 15175870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individualized dosimetry in Ru-106 ophthalmic brachytherapy based on MRI-derived ocular anatomical parameters.
    Liakopoulos DA; Perisinakis K; Solomou G; Kouvidakis A; Drakonaki EE; Bontzos G; Papadaki E; Detorakis ET
    Brachytherapy; 2022; 21(6):904-911. PubMed ID: 35995724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI and dual-energy CT fusion anatomic imaging in Ru-106 ophthalmic brachytherapy.
    Detorakis ET; Perisinakis K; Drakonaki E; Liakopoulos D; Tzedakis A; Papadaki E; Tsilimbaris MK
    Brachytherapy; 2021; 20(4):828-834. PubMed ID: 33785279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of gold nanoparticle effects in brachytherapy by an electron emitter ophthalmic plaque.
    Hashemi S; Aghamiri MR; Kahani M; Jaberi R
    Int J Nanomedicine; 2019; 14():4157-4165. PubMed ID: 31239674
    [No Abstract]   [Full Text] [Related]  

  • 14. In Vivo 3-Dimensional Radiopharmaceutical-Excited Fluorescence Tomography.
    Hu Z; Zhao M; Qu Y; Zhang X; Zhang M; Liu M; Guo H; Zhang Z; Wang J; Yang W; Tian J
    J Nucl Med; 2017 Jan; 58(1):169-174. PubMed ID: 27660137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Modified Dummy Plaque for the Accurate Placement of Ruthenium-106 Plaques in Brachytherapy of Intraocular Tumours.
    Krohn J
    Ocul Oncol Pathol; 2015 Sep; 2(1):1-4. PubMed ID: 27172165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Cerenkov Luminescence Imaging (CLI) Comparable With 3-D PET Standard Measurements.
    Habte F; Natarajan A; Paik DS; Gambhir SS
    Mol Imaging; 2018; 17():1536012118788637. PubMed ID: 30043654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma.
    Fan D; Zhang X; Zhong L; Liu X; Sun Y; Zhao H; Jia B; Liu Z; Zhu Z; Shi J; Wang F
    Bioconjug Chem; 2015 Jun; 26(6):1054-60. PubMed ID: 25853280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results.
    Hu H; Cao X; Kang F; Wang M; Lin Y; Liu M; Li S; Yao L; Liang J; Liang J; Nie Y; Chen X; Wang J; Wu K
    Eur Radiol; 2015 Jun; 25(6):1814-22. PubMed ID: 25577521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Biological Tissue Adhesive and Dissolvent System for Intraocular Tumor Plaque Brachytherapy.
    Zloto O; Vishnevskia-Dai V; Moisseiev J; Belkin M; Fabian ID
    Ophthalmic Surg Lasers Imaging Retina; 2016 Feb; 47(2):163-70. PubMed ID: 26878450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution Cerenkov light imaging of induced positron distribution in proton therapy.
    Yamamoto S; Toshito T; Fujii K; Morishita Y; Okumura S; Komori M
    Med Phys; 2014 Nov; 41(11):111913. PubMed ID: 25370646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.