BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26562407)

  • 1. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals.
    Zhang HY; Xiong J; Qi BL; Feng YQ; Yuan BF
    Chem Commun (Camb); 2016 Jan; 52(4):737-40. PubMed ID: 26562407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine.
    Klungland A; Robertson AB
    Free Radic Biol Med; 2017 Jun; 107():62-68. PubMed ID: 27890639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation.
    Ji D; Lin K; Song J; Wang Y
    Mol Biosyst; 2014 Jul; 10(7):1749-52. PubMed ID: 24789765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA.
    Hardwick JS; Lane AN; Brown T
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29369386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TET1-Mediated Oxidation of 5-Formylcytosine (5fC) to 5-Carboxycytosine (5caC) in RNA.
    Basanta-Sanchez M; Wang R; Liu Z; Ye X; Li M; Shi X; Agris PF; Zhou Y; Huang Y; Sheng J
    Chembiochem; 2017 Jan; 18(1):72-76. PubMed ID: 27805801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.
    Kizaki S; Zou T; Li Y; Han YW; Suzuki Y; Harada Y; Sugiyama H
    Chemistry; 2016 Nov; 22(46):16598-16601. PubMed ID: 27689340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis.
    Tang Y; Zheng SJ; Qi CB; Feng YQ; Yuan BF
    Anal Chem; 2015 Mar; 87(6):3445-52. PubMed ID: 25675106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.
    Modrzejewska M; Gawronski M; Skonieczna M; Zarakowska E; Starczak M; Foksinski M; Rzeszowska-Wolny J; Gackowski D; Olinski R
    Free Radic Biol Med; 2016 Dec; 101():378-383. PubMed ID: 27833031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase.
    Pidugu LS; Flowers JW; Coey CT; Pozharski E; Greenberg MM; Drohat AC
    Biochemistry; 2016 Nov; 55(45):6205-6208. PubMed ID: 27805810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine.
    Booth MJ; Ost TW; Beraldi D; Bell NM; Branco MR; Reik W; Balasubramanian S
    Nat Protoc; 2013 Oct; 8(10):1841-51. PubMed ID: 24008380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis.
    Tang Y; Xiong J; Jiang HP; Zheng SJ; Feng YQ; Yuan BF
    Anal Chem; 2014 Aug; 86(15):7764-72. PubMed ID: 24970241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into the recognition of 5-methylcytosine oxidation derivatives by the SUVH5 SRA domain.
    Rajakumara E; Nakarakanti NK; Nivya MA; Satish M
    Sci Rep; 2016 Feb; 6():20161. PubMed ID: 26841909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and abundance of 5-hydroxymethylcytosine in RNA.
    Huber SM; van Delft P; Mendil L; Bachman M; Smollett K; Werner F; Miska EA; Balasubramanian S
    Chembiochem; 2015 Mar; 16(5):752-5. PubMed ID: 25676849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Formylcytosine can be a stable DNA modification in mammals.
    Bachman M; Uribe-Lewis S; Yang X; Burgess HE; Iurlaro M; Reik W; Murrell A; Balasubramanian S
    Nat Chem Biol; 2015 Aug; 11(8):555-7. PubMed ID: 26098680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenic and cytotoxic properties of oxidation products of 5-methylcytosine revealed by next-generation sequencing.
    Xing XW; Liu YL; Vargas M; Wang Y; Feng YQ; Zhou X; Yuan BF
    PLoS One; 2013; 8(9):e72993. PubMed ID: 24066027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA.
    Madugundu GS; Cadet J; Wagner JR
    Nucleic Acids Res; 2014 Jun; 42(11):7450-60. PubMed ID: 24852253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability.
    Ngo TT; Yoo J; Dai Q; Zhang Q; He C; Aksimentiev A; Ha T
    Nat Commun; 2016 Feb; 7():10813. PubMed ID: 26905257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-methylcytosine and its derivatives.
    Yuan BF
    Adv Clin Chem; 2014; 67():151-87. PubMed ID: 25735861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.