These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 26562442)

  • 1. Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations.
    Ding Z; Shen Y; Wang L
    Neural Netw; 2016 Jan; 73():77-85. PubMed ID: 26562442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses.
    Pratap A; Raja R; Sowmiya C; Bagdasar O; Cao J; Rajchakit G
    Neural Netw; 2018 Jul; 103():128-141. PubMed ID: 29677558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O(t
    Chen J; Chen B; Zeng Z
    Neural Netw; 2018 Apr; 100():10-24. PubMed ID: 29427959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays.
    Peng X; Wu H; Song K; Shi J
    Neural Netw; 2017 Oct; 94():46-54. PubMed ID: 28750347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes.
    Ding X; Cao J; Zhao X; Alsaadi FE
    Proc Math Phys Eng Sci; 2017 Aug; 473(2204):20170322. PubMed ID: 28878565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Dissipativity and Quasi-Mittag-Leffler Synchronization of Fractional-Order Discontinuous Complex-Valued Neural Networks.
    Ding Z; Zhang H; Zeng Z; Yang L; Li S
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4139-4152. PubMed ID: 34739381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay.
    You X; Song Q; Zhao Z
    Neural Netw; 2020 Feb; 122():382-394. PubMed ID: 31785539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks.
    Chen J; Zeng Z; Jiang P
    Neural Netw; 2014 Mar; 51():1-8. PubMed ID: 24325932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons.
    Yang X; Li C; Song Q; Chen J; Huang J
    Neural Netw; 2018 Sep; 105():88-103. PubMed ID: 29793129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Nonfragile Synchronization in Finite Time for Fractional-Order Discontinuous Neural Networks With Nonlinear Growth Activations.
    Peng X; Wu H; Cao J
    IEEE Trans Neural Netw Learn Syst; 2019 Jul; 30(7):2123-2137. PubMed ID: 30442618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.
    Stamova I; Stamov G
    Neural Netw; 2017 Dec; 96():22-32. PubMed ID: 28950105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.
    Velmurugan G; Rakkiyappan R; Cao J
    Neural Netw; 2016 Jan; 73():36-46. PubMed ID: 26547242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition.
    Zhang X; Niu P; Ma Y; Wei Y; Li G
    Neural Netw; 2017 Oct; 94():67-75. PubMed ID: 28753446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality.
    Xiao J; Wen S; Yang X; Zhong S
    Neural Netw; 2020 Feb; 122():320-337. PubMed ID: 31751846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projective synchronization of fractional-order memristor-based neural networks.
    Bao HB; Cao JD
    Neural Netw; 2015 Mar; 63():1-9. PubMed ID: 25463390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projective synchronization for fractional neural networks.
    Yu J; Hu C; Jiang H; Fan X
    Neural Netw; 2014 Jan; 49():87-95. PubMed ID: 24184824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays.
    Li HL; Hu C; Cao J; Jiang H; Alsaedi A
    Neural Netw; 2019 Oct; 118():102-109. PubMed ID: 31254765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.
    Yang S; Yu J; Hu C; Jiang H
    Neural Netw; 2018 Aug; 104():104-113. PubMed ID: 29753177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations.
    Cai Z; Huang L; Zhang L
    Neural Netw; 2015 May; 65():105-14. PubMed ID: 25728473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks.
    Wu A; Zeng Z
    Neural Netw; 2016 Feb; 74():73-84. PubMed ID: 26655372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.