BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 26562482)

  • 1. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications.
    Du P; Paskaranandavadivel N; Angeli TR; Cheng LK; O'Grady G
    Wiley Interdiscip Rev Syst Biol Med; 2016; 8(1):69-85. PubMed ID: 26562482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity.
    Cheng LK; Komuro R; Austin TM; Buist ML; Pullan AJ
    World J Gastroenterol; 2007 Mar; 13(9):1378-83. PubMed ID: 17457969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility.
    Du P; O'Grady G; Gao J; Sathar S; Cheng LK
    Wiley Interdiscip Rev Syst Biol Med; 2013; 5(4):481-93. PubMed ID: 23463750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbal extracts modulate the amplitude and frequency of slow waves in circular smooth muscle of mouse small intestine.
    Storr M; Sibaev A; Weiser D; Kelber O; Schirra J; Goke B; Allescher HD
    Digestion; 2004; 70(4):257-64. PubMed ID: 15687728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of pacemaker activity recorded from mouse small intestine.
    Youm JB; Kim N; Han J; Kim E; Joo H; Leem CH; Goto G; Noma A; Earm YE
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1135-54. PubMed ID: 16608700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.
    Du P; O'Grady G; Cheng LK
    J Theor Biol; 2017 Jul; 425():72-79. PubMed ID: 28450068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small intestinal physiology and pathophysiology.
    Sarna SK; Otterson MF
    Gastroenterol Clin North Am; 1989 Jun; 18(2):375-404. PubMed ID: 2668175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside.
    Cheng LK; Du P; O'Grady G
    Physiology (Bethesda); 2013 Sep; 28(5):310-7. PubMed ID: 23997190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for the evaluation of intestinal transit and contractility in mice using fluorescence imaging and spatiotemporal motility mapping.
    de Backer O; Blanckaert B; Leybaert L; Lefebvre RA
    Neurogastroenterol Motil; 2008 Jun; 20(6):700-7. PubMed ID: 18248582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bi-phased course of electrophysiological response of isolated snail intestine on mechanical stimulation.
    Kaczorowski P; Stevesandt M; Kempczyński A; Trojanowska I; Smuszkiewicz P; Lampka M; Kopczyńska E; Tyrakowski T
    Folia Biol (Krakow); 2010; 58(3-4):151-6. PubMed ID: 20968178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motility of the small intestine: a look ahead.
    Mathias JR; Sninsky CA
    Am J Physiol; 1985 May; 248(5 Pt 1):G495-500. PubMed ID: 3887945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motility disorders of the small intestine: new insights into old problems.
    Kuemmerle JF
    J Clin Gastroenterol; 2000 Dec; 31(4):276-81. PubMed ID: 11129267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural mechanisms involved in the inhibition of intestinal motility induced by intestinal electrical stimulation in conscious dogs.
    Liu S; Liu J; Chen JD
    Neurogastroenterol Motil; 2006 Jan; 18(1):62-8. PubMed ID: 16371084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the electrical intestine turbulence induced by temperature changes.
    Gizzi A; Cherubini C; Migliori S; Alloni R; Portuesi R; Filippi S
    Phys Biol; 2010 Feb; 7(1):16011. PubMed ID: 20147777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling slow wave activity in the small intestine.
    Lin AS; Buist ML; Smith NP; Pullan AJ
    J Theor Biol; 2006 Sep; 242(2):356-62. PubMed ID: 16626759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro electrical activity of the equine pelvic flexure.
    Fintl C; Pearson GT; Mayhew IG; Hudson NP
    Equine Vet J Suppl; 2011 Aug; (39):145-8. PubMed ID: 21790770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of dingduwan on electric activities of gastrointestinal smooth muscle and effect of gastrointestinal motility].
    Sun SS; Yuan SQ; Tang Y
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 1994 Jul; 14(7):424-6. PubMed ID: 7950231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations of the human magneto- and electroenterogram.
    Lin AS; Buist ML; Cheng LK; Smith NP; Pullan AJ
    Ann Biomed Eng; 2006 Aug; 34(8):1322-31. PubMed ID: 16799829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular automaton model for simulating tissue-specific intestinal electrophysiological activity.
    Gao J; Du P; O'Grady G; Archer R; Gibbons SJ; Farrugia G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5537-40. PubMed ID: 24110991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical roles of anterograde and retrograde intestinal peristalses after feeding in a larval fish (
    Kikuchi K; Noh H; Numayama-Tsuruta K; Ishikawa T
    Am J Physiol Gastrointest Liver Physiol; 2020 Jun; 318(6):G1013-G1021. PubMed ID: 32281395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.