These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26562750)

  • 1. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0.
    Cheng T; Xiao H; Goddard WA
    J Phys Chem Lett; 2015 Dec; 6(23):4767-73. PubMed ID: 26562750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K.
    Cheng T; Xiao H; Goddard WA
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1795-1800. PubMed ID: 28167767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111).
    Xiao H; Cheng T; Goddard WA; Sundararaman R
    J Am Chem Soc; 2016 Jan; 138(2):483-6. PubMed ID: 26716884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insight into effect of doping of Ni on CO
    Ou LH
    J Mol Model; 2016 Oct; 22(10):246. PubMed ID: 27678451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why do RuO
    Tayyebi E; Hussain J; Skúlason E
    Chem Sci; 2020 Jul; 11(35):9542-9553. PubMed ID: 34094219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction Mechanisms for the Electrochemical Reduction of CO
    Cheng T; Xiao H; Goddard WA
    J Am Chem Soc; 2016 Oct; 138(42):13802-13805. PubMed ID: 27726392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface.
    Bernstein NJ; Akhade SA; Janik MJ
    Phys Chem Chem Phys; 2014 Jul; 16(27):13708-17. PubMed ID: 24722651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Insights into the Unique Role of Copper in CO
    Liu SP; Zhao M; Gao W; Jiang Q
    ChemSusChem; 2017 Jan; 10(2):387-393. PubMed ID: 27943655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Mechanisms Underlying Selectivities in C(1) and C(2) Products from Electrochemical Reduction of CO on Cu(111).
    Xiao H; Cheng T; Goddard WA
    J Am Chem Soc; 2017 Jan; 139(1):130-136. PubMed ID: 28001061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Product Selectivity in Electrochemical CO
    Song H; Tan YC; Kim B; Ringe S; Oh J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55272-55280. PubMed ID: 34767344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical CO Reduction: A Property of the Electrochemical Interface.
    Bagger A; Arnarson L; Hansen MH; Spohr E; Rossmeisl J
    J Am Chem Soc; 2019 Jan; 141(4):1506-1514. PubMed ID: 30618253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials.
    Choi C; Cheng T; Flores Espinosa M; Fei H; Duan X; Goddard WA; Huang Y
    Adv Mater; 2019 Feb; 31(6):e1805405. PubMed ID: 30549121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Free Boron Nitride Nanoribbon Catalysts for Electrochemical CO
    Tang S; Zhou X; Zhang S; Li X; Yang T; Hu W; Jiang J; Luo Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):906-915. PubMed ID: 30525373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces.
    Kuhl KP; Hatsukade T; Cave ER; Abram DN; Kibsgaard J; Jaramillo TF
    J Am Chem Soc; 2014 Oct; 136(40):14107-13. PubMed ID: 25259478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zn-Doped Cu(100) facet with efficient catalytic ability for the CO
    Zhang Y; Zhao Y; Wang C; Wei Z; Yang J; Ma J
    Phys Chem Chem Phys; 2019 Oct; 21(38):21341-21348. PubMed ID: 31531467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide conversion into hydrocarbon fuels on defective graphene-supported Cu nanoparticles from first principles.
    Lim DH; Jo JH; Shin DY; Wilcox J; Ham HC; Nam SW
    Nanoscale; 2014 May; 6(10):5087-92. PubMed ID: 24695587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical reduction of CO
    He H; Jagvaral Y
    Phys Chem Chem Phys; 2017 May; 19(18):11436-11446. PubMed ID: 28425555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.
    Wu J; Yadav RM; Liu M; Sharma PP; Tiwary CS; Ma L; Zou X; Zhou XD; Yakobson BI; Lou J; Ajayan PM
    ACS Nano; 2015 May; 9(5):5364-71. PubMed ID: 25897553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.