BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2656294)

  • 1. Interleukin-1 inhibits glucose-induced Ca2+ uptake by islets of Langerhans.
    Wolf BA; Hughes JH; Florholmen J; Turk J; McDaniel ML
    FEBS Lett; 1989 May; 248(1-2):35-8. PubMed ID: 2656294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the Ca2+ requirements for glucose- and carbachol-induced augmentation of inositol trisphosphate and inositol tetrakisphosphate accumulation in digitonin-permeabilized islets. Evidence for a glucose recognition site in insulin secretion.
    Wolf BA; Florholmen J; Turk J; McDaniel ML
    J Biol Chem; 1988 Mar; 263(8):3565-75. PubMed ID: 2831191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin 1 is potent modulator of insulin secretion from isolated rat islets of Langerhans.
    Comens PG; Wolf BA; Unanue ER; Lacy PE; McDaniel ML
    Diabetes; 1987 Aug; 36(8):963-70. PubMed ID: 3297891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exogenous arachidonic acid promotes insulin release from intact or permeabilized rat islets by dual mechanisms. Putative activation of Ca2+ mobilization and protein kinase C.
    Metz SA
    Diabetes; 1988 Nov; 37(11):1453-69. PubMed ID: 3141235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different effects of glucose and glyburide on insulin secretion in rat pancreatic islets pre-exposed to interleukin-1 beta. Possible involvement of K+ and Ca2+ channels.
    Buscema M; Rabuazzo AM; Vinci C; Caltabiano V; Vigneri R; Purrello F
    Diabetologia; 1993 Sep; 36(9):791-6. PubMed ID: 8405748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term exposure of rat pancreatic islets to human interleukin-1 beta increases cellular uptake of calcium.
    Borg LA; Eizirik DL
    Immunol Lett; 1990 Dec; 26(3):253-8. PubMed ID: 2086454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for calcium in the breakdown of inositol phospholipids in intact and digitonin-permeabilized pancreatic islets.
    Best L
    Biochem J; 1986 Sep; 238(3):773-9. PubMed ID: 3541917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular Ca2+ mobilization by arachidonic acid. Comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets.
    Wolf BA; Turk J; Sherman WR; McDaniel ML
    J Biol Chem; 1986 Mar; 261(8):3501-11. PubMed ID: 3081507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predominance of stimulatory effects of interleukin-1 beta on isolated human pancreatic islets.
    Eizirik DL; Welsh N; Hellerström C
    J Clin Endocrinol Metab; 1993 Feb; 76(2):399-403. PubMed ID: 8432782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose 6-phosphate regulates Ca2+ steady state in endoplasmic reticulum of islets. A possible link in glucose-induced insulin secretion.
    Wolf BA; Colca JR; Comens PG; Turk J; McDaniel ML
    J Biol Chem; 1986 Dec; 261(35):16284-7. PubMed ID: 3023346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-1 beta-induced stimulation of insulin release in mouse pancreatic islets is related to diacylglycerol production and protein kinase C activation.
    Eizirik DL; Sandler S; Welsh N; Juntti-Berggren L; Berggren PO
    Mol Cell Endocrinol; 1995 Jun; 111(2):159-65. PubMed ID: 7556877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The digitonin-permeabilized pancreatic islet model. Effect of myo-inositol 1,4,5-trisphosphate on Ca2+ mobilization.
    Wolf BA; Comens PG; Ackermann KE; Sherman WR; McDaniel ML
    Biochem J; 1985 May; 227(3):965-9. PubMed ID: 3890834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose stimulates voltage- and calcium-dependent inositol trisphosphate production and intracellular calcium mobilization in insulin-secreting beta TC3 cells.
    Gromada J; Frøkjaer-Jensen J; Dissing S
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):339-45. PubMed ID: 8660305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of calcium uptake/efflux from the islet-cell endoplasmic reticulum with regard to the secretion of insulin.
    Colca JR; Wolf BA; McDaniel ML
    Prog Clin Biol Res; 1988; 265():117-32. PubMed ID: 3043440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Ca2+ homeostasis by islet endoplasmic reticulum and its role in insulin secretion.
    Wolf BA; Colca JR; Turk J; Florholmen J; McDaniel ML
    Am J Physiol; 1988 Feb; 254(2 Pt 1):E121-36. PubMed ID: 3279798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the role of inositol trisphosphate in the regulation of insulin secretion from isolated rat islets of Langerhans.
    Morgan NG; Rumford GM; Montague W
    Biochem J; 1985 Jun; 228(3):713-8. PubMed ID: 2992453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of insulin secretion from rat islets of Langerhans by interleukin-6. An effect distinct from that of interleukin-1.
    Southern C; Schulster D; Green IC
    Biochem J; 1990 Nov; 272(1):243-5. PubMed ID: 2264829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans.
    Roe MW; Philipson LH; Frangakis CJ; Kuznetsov A; Mertz RJ; Lancaster ME; Spencer B; Worley JF; Dukes ID
    J Biol Chem; 1994 Jul; 269(28):18279-82. PubMed ID: 8034570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal transduction in insulin secretion: comparison between fuel stimuli and receptor agonists.
    Wollheim CB; Biden TJ
    Ann N Y Acad Sci; 1986; 488():317-33. PubMed ID: 3107454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GTP mobilization of Ca2+ from the endoplasmic reticulum of islets. Comparison with myo-inositol 1,4,5-trisphosphate.
    Wolf BA; Florholmen J; Colca JR; McDaniel ML
    Biochem J; 1987 Feb; 242(1):137-41. PubMed ID: 3297043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.