These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26563067)

  • 1. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
    Sharma A; Adapureddy SM; Goel S
    J Environ Sci Eng; 2014 Apr; 56(2):209-14. PubMed ID: 26563067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.
    Lakshmanan D; Clifford DA; Samanta G
    Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.
    Mohora E; Rončević S; Dalmacija B; Agbaba J; Watson M; Karlović E; Dalmacija M
    J Hazard Mater; 2012 Oct; 235-236():257-64. PubMed ID: 22902131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.
    Li L; van Genuchten CM; Addy SE; Yao J; Gao N; Gadgil AJ
    Environ Sci Technol; 2012 Nov; 46(21):12038-45. PubMed ID: 22978489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water.
    Mertens J; Casentini B; Masion A; Pöthig R; Wehrli B; Furrer G
    Water Res; 2012 Jan; 46(1):53-62. PubMed ID: 22078251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment.
    Goren AY; Kobya M; Oncel MS
    Chemosphere; 2020 Jul; 251():126363. PubMed ID: 32151809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of arsenic from aqueous solution using electrocoagulation.
    Balasubramanian N; Kojima T; Basha CA; Srinivasakannan C
    J Hazard Mater; 2009 Aug; 167(1-3):966-9. PubMed ID: 19231076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process.
    Kumar NS; Goel S
    J Hazard Mater; 2010 Jan; 173(1-3):528-33. PubMed ID: 19766389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic removal from groundwater by MnO2-modified natural clinoptilolite zeolite: effects of pH and initial feed concentration.
    Camacho LM; Parra RR; Deng S
    J Hazard Mater; 2011 May; 189(1-2):286-93. PubMed ID: 21398033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.
    Wan W; Pepping TJ; Banerji T; Chaudhari S; Giammar DE
    Water Res; 2011 Jan; 45(1):384-92. PubMed ID: 20800261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of arsenic from water by electrocoagulation.
    Ratna Kumar P; Chaudhari S; Khilar KC; Mahajan SP
    Chemosphere; 2004 Jun; 55(9):1245-52. PubMed ID: 15081765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocoagulation study for the removal of arsenic and chromium from aqueous solution.
    Thella K; Verma B; Srivastava VC; Srivastava KK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Apr; 43(5):554-62. PubMed ID: 18324543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.
    Liu F; Zhou J; Zhang S; Liu L; Zhou L; Fan W
    PLoS One; 2015; 10(9):e0138891. PubMed ID: 26398214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.
    Gill LW; O'Farrell C
    Water Res; 2015 Dec; 86():46-57. PubMed ID: 26093797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter.
    Delaire C; van Genuchten CM; Nelson KL; Amrose SE; Gadgil AJ
    Environ Sci Technol; 2015 Aug; 49(16):9945-53. PubMed ID: 26172118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of arsenic from wastewaters using electrocoagulation.
    Deniel R; Bindu VH; Rao AV; Anjaneyulu Y
    J Environ Sci Eng; 2008 Oct; 50(4):283-8. PubMed ID: 19697763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.