These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26563101)

  • 1. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation.
    Cruz Perez B; Pavlatos E; Morris HJ; Chen H; Pan X; Hart RT; Liu J
    Ann Biomed Eng; 2016 Jul; 44(7):2302-12. PubMed ID: 26563101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic measurement of scleral cross-sectional strains during elevations of intraocular pressure: method validation and initial results in posterior porcine sclera.
    Tang J; Liu J
    J Biomech Eng; 2012 Sep; 134(9):091007. PubMed ID: 22938374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Strains in Human Posterior Sclera Using Ultrasound Speckle Tracking.
    Pavlatos E; Perez BC; Morris HJ; Chen H; Palko JR; Pan X; Weber PA; Hart RT; Liu J
    J Biomech Eng; 2016 Feb; 138(2):021015. PubMed ID: 26632258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional Deformation of the Optic Nerve Head and Peripapillary Sclera During IOP Elevation.
    Pavlatos E; Ma Y; Clayson K; Pan X; Liu J
    Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3779-3788. PubMed ID: 30046819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Inflation Response of Porcine Optic Nerve Head Using High-Frequency Ultrasound Elastography.
    Ma Y; Pavlatos E; Clayson K; Kwok S; Pan X; Liu J
    J Biomech Eng; 2020 May; 142(5):0510131-7. PubMed ID: 31750882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biaxial mechanical testing of posterior sclera using high-resolution ultrasound speckle tracking for strain measurements.
    Cruz Perez B; Tang J; Morris HJ; Palko JR; Pan X; Hart RT; Liu J
    J Biomech; 2014 Mar; 47(5):1151-6. PubMed ID: 24438767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa.
    Coudrillier B; Campbell IC; Read AT; Geraldes DM; Vo NT; Feola A; Mulvihill J; Albon J; Abel RL; Ethier CR
    Invest Ophthalmol Vis Sci; 2016 May; 57(6):2666-77. PubMed ID: 27183053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between biomechanical responses of posterior sclera and IOP elevations during micro intraocular volume change.
    Morris HJ; Tang J; Cruz Perez B; Pan X; Hart RT; Weber PA; Liu J
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7215-22. PubMed ID: 24130185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The in vitro inflation response of mouse sclera.
    Myers KM; Cone FE; Quigley HA; Gelman S; Pease ME; Nguyen TD
    Exp Eye Res; 2010 Dec; 91(6):866-75. PubMed ID: 20868685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Deformation of Peripapillary Retina in Response to Acute Intraocular Pressure Elevation.
    Kwok S; Pan M; Hazen N; Pan X; Liu J
    J Biomech Eng; 2022 Jun; 144(6):. PubMed ID: 35001106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental surface strain mapping of porcine peripapillary sclera due to elevations of intraocular pressure.
    Girard MJ; Downs JC; Burgoyne CF; Suh JK
    J Biomech Eng; 2008 Aug; 130(4):041017. PubMed ID: 18601459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction.
    Midgett DE; Jefferys JL; Quigley HA; Nguyen TD
    Acta Biomater; 2020 Apr; 106():225-241. PubMed ID: 32044458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional variations in mechanical strain in the posterior human sclera.
    Fazio MA; Grytz R; Bruno L; Girard MJ; Gardiner S; Girkin CA; Downs JC
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5326-33. PubMed ID: 22700704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic testing of regional viscoelastic behavior of canine sclera.
    Palko JR; Pan X; Liu J
    Exp Eye Res; 2011 Dec; 93(6):825-32. PubMed ID: 21983041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in human peripapillary scleral strain.
    Fazio MA; Grytz R; Morris JS; Bruno L; Gardiner SK; Girkin CA; Downs JC
    Biomech Model Mechanobiol; 2014 Jun; 13(3):551-63. PubMed ID: 23896936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Characterization of corneal deformation using ultrasound speckle tracking.
    Clayson K; Pavlatos E; Ma Y; Liu J
    J Innov Opt Health Sci; 2017 Nov; 10(6):. PubMed ID: 29399203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High variability in strain estimation errors when using a commercial ultrasound speckle tracking algorithm on tendon tissue.
    Fröberg Å; Mårtensson M; Larsson M; Janerot-Sjöberg B; D'Hooge J; Arndt A
    Acta Radiol; 2016 Oct; 57(10):1223-9. PubMed ID: 26787677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent.
    Fazio MA; Grytz R; Morris JS; Bruno L; Girkin CA; Downs JC
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(11):7189-98. PubMed ID: 25237162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-field displacement measurement of corneoscleral shells by combining multi-camera speckle interferometry with 3D shape reconstruction.
    Bianco G; Bruno L; Girkin CA; Fazio MA
    J Mech Behav Biomed Mater; 2020 Mar; 103():103560. PubMed ID: 32090952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Optimization Approach for Creating Application-specific Ultrasound Speckle Tracking Algorithms.
    Kuder IM; Rock M; Jones GG; Amis AA; Cegla FB; van Arkel RJ
    Ultrasound Med Biol; 2024 Aug; 50(8):1108-1121. PubMed ID: 38714465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.