These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 26563550)
1. Silica fertilization and nano-MnO₂ amendment on bacterial community composition in high arsenic paddy soils. Shao J; He Y; Zhang H; Chen A; Lei M; Chen J; Peng L; Gu JD Appl Microbiol Biotechnol; 2016 Mar; 100(5):2429-37. PubMed ID: 26563550 [TBL] [Abstract][Full Text] [Related]
2. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO Li B; Zhou S; Wei D; Long J; Peng L; Tie B; Williams PN; Lei M Sci Total Environ; 2019 Feb; 650(Pt 1):546-556. PubMed ID: 30205344 [TBL] [Abstract][Full Text] [Related]
3. [Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils]. Yuan HZ; Wu H; Ge TD; Li KL; Wu JS; Wang JR Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1807-13. PubMed ID: 26572036 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Shi L; Guo Z; Peng C; Xiao X; Feng W; Huang B; Ran H Ecotoxicol Environ Saf; 2019 Apr; 171():425-434. PubMed ID: 30639868 [TBL] [Abstract][Full Text] [Related]
5. Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil- Associated Bacteria. Masuda S; Bao Z; Okubo T; Sasaki K; Ikeda S; Shinoda R; Anda M; Kondo R; Mori Y; Minamisawa K Microbes Environ; 2016; 31(1):70-5. PubMed ID: 26947443 [TBL] [Abstract][Full Text] [Related]
6. [Microbial metabolism in typical flooded paddy soils ]. Cai Y; Wu Y; Wang S; Yan X; Zhu Y; Jia Z Wei Sheng Wu Xue Bao; 2014 Sep; 54(9):1033-44. PubMed ID: 25522592 [TBL] [Abstract][Full Text] [Related]
7. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Yuan H; Ge T; Wu X; Liu S; Tong C; Qin H; Wu M; Wei W; Wu J Appl Microbiol Biotechnol; 2012 Aug; 95(4):1061-71. PubMed ID: 22159889 [TBL] [Abstract][Full Text] [Related]
8. [Effects of Fertilization on Soil Microbial Abundance and Community Structure at DNA and cDNA Levels in Paddy Soils]. Wang C; Wu N; Hou HJ; Tang YF; Shen JL; Qin HL Huan Jing Ke Xue; 2016 Nov; 37(11):4372-4379. PubMed ID: 29964694 [TBL] [Abstract][Full Text] [Related]
9. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Su JQ; Ding LJ; Xue K; Yao HY; Quensen J; Bai SJ; Wei WX; Wu JS; Zhou J; Tiedje JM; Zhu YG Mol Ecol; 2015 Jan; 24(1):136-50. PubMed ID: 25410123 [TBL] [Abstract][Full Text] [Related]
10. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Ding LJ; Su JQ; Sun GX; Wu JS; Wei WX Appl Microbiol Biotechnol; 2018 Feb; 102(4):1969-1982. PubMed ID: 29274058 [TBL] [Abstract][Full Text] [Related]
11. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601 [TBL] [Abstract][Full Text] [Related]
12. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils. Zou L; Jiang O; Zhang S; Duan G; Gustave W; An X; Tang X Environ Res; 2024 May; 249():118421. PubMed ID: 38325790 [TBL] [Abstract][Full Text] [Related]
13. Role of MnO Dong G; Han R; Pan Y; Zhang C; Liu Y; Wang H; Ji X; Dahlgren RA; Shang X; Chen Z; Zhang M J Hazard Mater; 2021 Jan; 401():123362. PubMed ID: 32629343 [TBL] [Abstract][Full Text] [Related]
14. Environmentally Relevant-Level CeO Pan C; Bao Y; Guo A; Ma J J Agric Food Chem; 2020 Aug; 68(31):8172-8184. PubMed ID: 32663007 [TBL] [Abstract][Full Text] [Related]
15. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage. Wang H; Guo CL; Yang CF; Lu GN; Chen MQ; Dang Z J Appl Microbiol; 2016 Jul; 121(1):196-206. PubMed ID: 27005987 [TBL] [Abstract][Full Text] [Related]
16. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil. Bao Q; Huang Y; Wang F; Nie S; Nicol GW; Yao H; Ding L Appl Microbiol Biotechnol; 2016 Jul; 100(13):5989-98. PubMed ID: 26923143 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. Ahn JH; Lee SA; Kim JM; Kim MS; Song J; Weon HY J Microbiol; 2016 Nov; 54(11):724-731. PubMed ID: 27796926 [TBL] [Abstract][Full Text] [Related]
18. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Sun M; Xiao T; Ning Z; Xiao E; Sun W Appl Microbiol Biotechnol; 2015 Mar; 99(6):2911-22. PubMed ID: 25408313 [TBL] [Abstract][Full Text] [Related]
19. Response of bacterial communities and nitrogen-cycling genes in newly reclaimed mudflat paddy soils to nitrogen fertilizer gradients. Li Q; Zhang Y; Hu J; Dai Q Environ Sci Pollut Res Int; 2022 Oct; 29(47):71113-71123. PubMed ID: 35595885 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. Ahn JH; Song J; Kim BY; Kim MS; Joa JH; Weon HY J Microbiol; 2012 Oct; 50(5):754-65. PubMed ID: 23124742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]