These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26563593)

  • 41. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects.
    Lewtas J
    Mutat Res; 2007; 636(1-3):95-133. PubMed ID: 17951105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development and application of a multi-channel monitoring system for near real-time VOC measurement in a hazardous waste management facility.
    Je CH; Stone R; Oberg SG
    Sci Total Environ; 2007 Sep; 382(2-3):364-74. PubMed ID: 17521707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Demonstration of a mobile Flux Laboratory for the Atmospheric Measurement of Emissions (FLAME) to assess emissions inventories.
    Moore TO; Doughty DC; Marr LC
    J Environ Monit; 2009 Feb; 11(2):259-68. PubMed ID: 19212582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Field Measurements of Black Carbon Yields from Gas Flaring.
    Conrad BM; Johnson MR
    Environ Sci Technol; 2017 Feb; 51(3):1893-1900. PubMed ID: 27997147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and simulation of a utility oilfield flare in Iraq/Kurdistan region using CFD and API-521 methodology.
    Maaroof AA; Smith JD; Zangana MHS
    Heliyon; 2023 Aug; 9(8):e18581. PubMed ID: 37593608
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using PM(2.5) lanthanoid elements and nonparametric wind regression to track petroleum refinery FCC emissions.
    Du L; Turner J
    Sci Total Environ; 2015 Oct; 529():65-71. PubMed ID: 26005750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy.
    Gross KC; Bradley KC; Perram GP
    Environ Sci Technol; 2010 Dec; 44(24):9390-7. PubMed ID: 21069951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Building a comprehensive mill-level database for the Industrial Sectors Integrated Solutions (ISIS) model of the U.S. pulp and paper sector.
    Modak N; Spence K; Sood S; Rosati JA
    PLoS One; 2015; 10(3):e0120954. PubMed ID: 25806516
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing the emission sources of atmospheric mercury in wet deposition across Illinois.
    Gratz LE; Keeler GJ; Morishita M; Barres JA; Dvonch JT
    Sci Total Environ; 2013 Mar; 448():120-31. PubMed ID: 23199452
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational fluid dynamics modeling of laboratory flames and an industrial flare.
    Singh KD; Gangadharan P; Chen DH; Lou HH; Li X; Richmond P
    J Air Waste Manag Assoc; 2014 Nov; 64(11):1328-40. PubMed ID: 25509554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emissions from a controlled fire in municipal solid waste bales.
    Nammari DR; Hogland W; Marques M; Nimmermark S; Moutavtchi V
    Waste Manag; 2004; 24(1):9-18. PubMed ID: 14672722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical remote sensing to quantify fugitive particulate mass emissions from stationary short-term and mobile continuous sources: part II. Field applications.
    Du K; Yuen W; Wang W; Rood MJ; Varma RM; Hashmonay RA; Kim BJ; Kemme MR
    Environ Sci Technol; 2011 Jan; 45(2):666-72. PubMed ID: 21142143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical and observational assessments of flare efficiencies.
    Leahey DM; Preston K; Strosher M
    J Air Waste Manag Assoc; 2001 Dec; 51(12):1610-6. PubMed ID: 15666465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward a Better Air-Assisted Flare Design for Safe and Efficient Operation during Purge Flow Conditions: Designing and Performance Testing.
    Alhameedi HA; Smith JD; Ani P; Powley T
    ACS Omega; 2022 Nov; 7(47):42793-42800. PubMed ID: 36467909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atmospheric odor dispersion from oil refinery flare system: a case study.
    Oliveira SLA; Corrêa SM
    Environ Monit Assess; 2022 Jul; 194(8):563. PubMed ID: 35789438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methods to determine response factors for infrared gas imagers used as quantitative measurement devices.
    Zeng Y; Morris J; Sanders A; Mutyala S; Zeng C
    J Air Waste Manag Assoc; 2017 Nov; 67(11):1180-1191. PubMed ID: 27723435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The chemical industry: challenges and opportunities through the year 2000.
    Schmidt-Bleek F
    Biomed Environ Sci; 1988 Dec; 1(4):339-49. PubMed ID: 3268119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inefficient and unlit natural gas flares both emit large quantities of methane.
    Plant G; Kort EA; Brandt AR; Chen Y; Fordice G; Gorchov Negron AM; Schwietzke S; Smith M; Zavala-Araiza D
    Science; 2022 Sep; 377(6614):1566-1571. PubMed ID: 36173866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.