BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 26563616)

  • 1. Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp. tritici.
    Feng H; Wang T; Feng C; Zhang Q; Zhang X; Huang L; Wang X; Kang Z
    Physiol Plant; 2016 May; 157(1):95-107. PubMed ID: 26563616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici.
    Wang X; Tang C; Zhang G; Li Y; Wang C; Liu B; Qu Z; Zhao J; Han Q; Huang L; Chen X; Kang Z
    BMC Genomics; 2009 Jun; 10():289. PubMed ID: 19566949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction.
    Wang X; Liu W; Chen X; Tang C; Dong Y; Ma J; Huang X; Wei G; Han Q; Huang L; Kang Z
    BMC Plant Biol; 2010 Jan; 10():9. PubMed ID: 20067621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ABA-Induced Sugar Transporter TaSTP6 Promotes Wheat Susceptibility to Stripe Rust.
    Huai B; Yang Q; Qian Y; Qian W; Kang Z; Liu J
    Plant Physiol; 2019 Nov; 181(3):1328-1343. PubMed ID: 31540949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of expressed genes during compatible interaction between stripe rust (Puccinia striiformis) and wheat using a cDNA library.
    Ma J; Huang X; Wang X; Chen X; Qu Z; Huang L; Kang Z
    BMC Genomics; 2009 Dec; 10():586. PubMed ID: 19995415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression network analysis and identification of core genes in the interaction between wheat and Puccinia striiformis f. sp. tritici.
    Wang Y; Zhang K; Chen D; Liu K; Chen W; He F; Tong Z; Luo Q
    Arch Microbiol; 2024 May; 206(5):241. PubMed ID: 38698267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TaMCA1, a regulator of cell death, is important for the interaction between wheat and Puccinia striiformis.
    Hao Y; Wang X; Wang K; Li H; Duan X; Tang C; Kang Z
    Sci Rep; 2016 May; 6():26946. PubMed ID: 27230563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function.
    Xu Q; Tang C; Wang X; Sun S; Zhao J; Kang Z; Wang X
    Nat Commun; 2019 Dec; 10(1):5571. PubMed ID: 31804478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.
    Rutter WB; Salcedo A; Akhunova A; He F; Wang S; Liang H; Bowden RL; Akhunov E
    BMC Genomics; 2017 Apr; 18(1):291. PubMed ID: 28403814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction.
    Coram TE; Wang M; Chen X
    Mol Plant Pathol; 2008 Mar; 9(2):157-69. PubMed ID: 18705849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of rice nonhost resistance to Puccinia striiformis f. sp. tritici using two-dimensional electrophoresis.
    Zhao J; Yang Y; Kang Z
    Int J Mol Sci; 2014 Nov; 15(12):21644-59. PubMed ID: 25429427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stripe rust effector Pst03724 modulates host immunity by inhibiting NAD kinase activation by a calmodulin.
    Wang Y; Liu C; Qin Y; Du Y; Song C; Kang Z; Guo J; Guo J
    Plant Physiol; 2024 May; 195(2):1624-1641. PubMed ID: 38441329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haustoria - arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici.
    Xu Q; Tang C; Wang L; Zhao C; Kang Z; Wang X
    Mol Plant Pathol; 2020 Jan; 21(1):83-94. PubMed ID: 31774224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome-Wide
    Cerav EN; Wu N; Akkaya MS
    Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611510
    [No Abstract]   [Full Text] [Related]  

  • 15. Development-associated microRNAs in grains of wheat (Triticum aestivum L.).
    Meng F; Liu H; Wang K; Liu L; Wang S; Zhao Y; Yin J; Li Y
    BMC Plant Biol; 2013 Sep; 13():140. PubMed ID: 24060047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global identification and characterization of miRNA family members responsive to potassium deprivation in wheat (Triticum aestivum L.).
    Zhao Y; Xu K; Liu G; Li S; Zhao S; Liu X; Yang X; Xiao K
    Sci Rep; 2020 Sep; 10(1):15812. PubMed ID: 32978439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Analysis of lncRNA and circRNA Related to Wheat Grain Development.
    Wang M; Wang L; Wang S; Zhang J; Fu Z; Wu P; Yang A; Wu D; Sun G; Wang C
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Wheat Annexin
    Shi B; Liu W; Ma Q
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling of Groundnut bud necrosis orthotospovirus-responsive microRNA and their targets in tomato based on deep sequencing.
    Nivedha M; Harish S; Angappan K; Karthikeyan G; Kumar KK; Murugan M; Infant Richard J
    J Virol Methods; 2024 Jun; 327():114924. PubMed ID: 38574773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Regulatory Networks of MicroRNAs and Their Targets in Response to
    Jeyaraj A; Wang X; Wang S; Liu S; Zhang R; Wu A; Wei C
    Front Plant Sci; 2019; 10():1096. PubMed ID: 31572415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.