These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26564854)

  • 1. Body-size reduction in vertebrates following the end-Devonian mass extinction.
    Sallan L; Galimberti AK
    Science; 2015 Nov; 350(6262):812-5. PubMed ID: 26564854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates.
    Sallan LC; Coates MI
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10131-5. PubMed ID: 20479258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial radiation of jaws demonstrated stability despite faunal and environmental change.
    Anderson PS; Friedman M; Brazeau MD; Rayfield EJ
    Nature; 2011 Jul; 476(7359):206-9. PubMed ID: 21734660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological selectivity of the emerging mass extinction in the oceans.
    Payne JL; Bush AM; Heim NA; Knope ML; McCauley DJ
    Science; 2016 Sep; 353(6305):1284-6. PubMed ID: 27629258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Triassic marine biotic recovery: the predators' perspective.
    Scheyer TM; Romano C; Jenks J; Bucher H
    PLoS One; 2014; 9(3):e88987. PubMed ID: 24647136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observations on the radiation of lobe-finned fishes, ray-finned fishes, and cartilaginous fishes: phylogeny of the opioid/orphanin gene family and the 2R hypothesis.
    Dores RM; Majeed Q; Komorowski L
    Gen Comp Endocrinol; 2011 Jan; 170(2):253-64. PubMed ID: 20937278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous-Palaeogene mass extinction.
    Sibert E; Friedman M; Hull P; Hunt G; Norris R
    Proc Biol Sci; 2018 Oct; 285(1888):. PubMed ID: 30305432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous.
    Ghezelayagh A; Harrington RC; Burress ED; Campbell MA; Buckner JC; Chakrabarty P; Glass JR; McCraney WT; Unmack PJ; Thacker CE; Alfaro ME; Friedman ST; Ludt WB; Cowman PF; Friedman M; Price SA; Dornburg A; Faircloth BC; Wainwright PC; Near TJ
    Nat Ecol Evol; 2022 Aug; 6(8):1211-1220. PubMed ID: 35835827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extinction risk is most acute for the world's largest and smallest vertebrates.
    Ripple WJ; Wolf C; Newsome TM; Hoffmann M; Wirsing AJ; McCauley DJ
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10678-10683. PubMed ID: 28923917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fish tail as a derivation from axial musculoskeletal anatomy: an integrative analysis of functional morphology.
    Flammang BE
    Zoology (Jena); 2014 Feb; 117(1):86-92. PubMed ID: 24290784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Late Devonian actinopterygian suggests high lineage survivorship across the end-Devonian mass extinction.
    Giles S; Feilich K; Warnock RCM; Pierce SE; Friedman M
    Nat Ecol Evol; 2023 Jan; 7(1):10-19. PubMed ID: 36396970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The largest Silurian vertebrate and its palaeoecological implications.
    Choo B; Zhu M; Zhao W; Jia L; Zhu Y
    Sci Rep; 2014 Jun; 4():5242. PubMed ID: 24921626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction.
    Sibert EC; Norris RD
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8537-42. PubMed ID: 26124114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary biology: A flourishing of fish forms.
    Alfaro M; Santini F
    Nature; 2010 Apr; 464(7290):840-2. PubMed ID: 20376139
    [No Abstract]   [Full Text] [Related]  

  • 16. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction.
    Friedman M
    Proc Biol Sci; 2010 Jun; 277(1688):1675-83. PubMed ID: 20133356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological emergence of thermal clines in body size.
    Edeline E; Lacroix G; Delire C; Poulet N; Legendre S
    Glob Chang Biol; 2013 Oct; 19(10):3062-8. PubMed ID: 23780903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition?
    Graham JB; Lee HJ
    Physiol Biochem Zool; 2004; 77(5):720-31. PubMed ID: 15547791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fish 'tails' result from outgrowth and reduction of two separate ancestral tails.
    Sallan L
    Curr Biol; 2016 Dec; 26(23):R1224-R1225. PubMed ID: 27923128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis.
    Lamsdell JC; Selden PA
    Evolution; 2017 Jan; 71(1):95-110. PubMed ID: 27783385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.