BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26564903)

  • 1. Osteoclast activation and sickle bone disease.
    Gordeuk VR
    Blood; 2015 Nov; 126(20):2259-60. PubMed ID: 26564903
    [No Abstract]   [Full Text] [Related]  

  • 2. Hypoxia-reperfusion affects osteogenic lineage and promotes sickle cell bone disease.
    Dalle Carbonare L; Matte' A; Valenti MT; Siciliano A; Mori A; Schweiger V; Zampieri G; Perbellini L; De Franceschi L
    Blood; 2015 Nov; 126(20):2320-8. PubMed ID: 26330244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy.
    Hebbel RP; Osarogiagbon R; Kaul D
    Microcirculation; 2004 Mar; 11(2):129-51. PubMed ID: 15280088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Exercise-Induced Oxidative Stress in Sickle Cell Trait and Disease.
    Chirico EN; Faës C; Connes P; Canet-Soulas E; Martin C; Pialoux V
    Sports Med; 2016 May; 46(5):629-39. PubMed ID: 26666745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoclastogenesis and osteoclast activation in dialysis-related amyloid osteopathy.
    Kazama JJ; Maruyama H; Gejyo F
    Am J Kidney Dis; 2001 Oct; 38(4 Suppl 1):S156-60. PubMed ID: 11576944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone and joint manifestations of sickle cell anemia].
    Hernigou P
    Acta Orthop Belg; 1999; 65 Suppl 1():9-16. PubMed ID: 10084211
    [No Abstract]   [Full Text] [Related]  

  • 7. Induced expression of bone morphogenetic protein-6 and Smads signaling in human monocytes derived dendritic cells during sickle-cell pathology with orthopedic complications.
    Abhishek K; Kumar R; Arif E; Patra PK; Choudhary SB; Sohail M
    Biochem Biophys Res Commun; 2010 Jun; 396(4):950-5. PubMed ID: 20460105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of oxidative stress in the pathogenesis of sickle cell disease.
    Chirico EN; Pialoux V
    IUBMB Life; 2012 Jan; 64(1):72-80. PubMed ID: 22131167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exacerbated metabolic changes in skeletal muscle of sickle cell mice submitted to an acute ischemia-reperfusion paradigm.
    Chatel B; Messonnier LA; Vilmen C; Bernard M; Pialoux V; Bendahan D
    Clin Sci (Lond); 2018 Oct; 132(19):2103-2115. PubMed ID: 30185507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoclastic microRNAs and their translational potential in skeletal diseases.
    Inoue K; Nakano S; Zhao B
    Semin Immunopathol; 2019 Sep; 41(5):573-582. PubMed ID: 31591677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoclasts constitutively express regulators of bone resorption: an immunohistochemical and in situ hybridization study.
    O'Keefe RJ; Teot LA; Singh D; Puzas JE; Rosier RN; Hicks DG
    Lab Invest; 1997 Apr; 76(4):457-65. PubMed ID: 9111508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of estrogen receptor-alpha in cells of the osteoclastic lineage.
    Oreffo RO; Kusec V; Virdi AS; Flanagan AM; Grano M; Zambonin-Zallone A; Triffitt JT
    Histochem Cell Biol; 1999 Feb; 111(2):125-33. PubMed ID: 10090573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischemia-reperfusion injury in sickle cell anemia: relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain.
    Hebbel RP
    Hematol Oncol Clin North Am; 2014 Apr; 28(2):181-98. PubMed ID: 24589261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RANKL-RANK signaling in osteoclastogenesis and bone disease.
    Wada T; Nakashima T; Hiroshi N; Penninger JM
    Trends Mol Med; 2006 Jan; 12(1):17-25. PubMed ID: 16356770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lectin-like oxidized low-density lipoprotein receptor-1 abrogation causes resistance to inflammatory bone destruction in mice, despite promoting osteoclastogenesis in the steady state.
    Nakayachi M; Ito J; Hayashida C; Ohyama Y; Kakino A; Okayasu M; Sato T; Ogasawara T; Kaneda T; Suda N; Sawamura T; Hakeda Y
    Bone; 2015 Jun; 75():170-82. PubMed ID: 25744064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenesis and management of myeloma bone disease.
    Christoulas D; Terpos E; Dimopoulos MA
    Expert Rev Hematol; 2009 Aug; 2(4):385-98. PubMed ID: 21082944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition "Killing Two Birds with One Stone"?
    Jimi E; Takakura N; Hiura F; Nakamura I; Hirata-Tsuchiya S
    Cells; 2019 Dec; 8(12):. PubMed ID: 31847314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The osteoclast: friend or foe?
    Novack DV; Teitelbaum SL
    Annu Rev Pathol; 2008; 3():457-84. PubMed ID: 18039135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone disease and cytokines in idiopathic hypercalciuria: a review.
    Santos AC; Lima EM; Oliveira EA; Simões e Silva AC
    J Pediatr Endocrinol Metab; 2011; 24(7-8):405-10. PubMed ID: 21932573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts.
    Faict S; Muller J; De Veirman K; De Bruyne E; Maes K; Vrancken L; Heusschen R; De Raeve H; Schots R; Vanderkerken K; Caers J; Menu E
    Blood Cancer J; 2018 Nov; 8(11):105. PubMed ID: 30409995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.