These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 26565023)
41. Life cycle of yeast prions: propagation mediated by amyloid fibrils. Inoue Y Protein Pept Lett; 2009; 16(3):271-6. PubMed ID: 19275740 [TBL] [Abstract][Full Text] [Related]
42. Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Chen B; Bruce KL; Newnam GP; Gyoneva S; Romanyuk AV; Chernoff YO Mol Microbiol; 2010 Jun; 76(6):1483-99. PubMed ID: 20444092 [TBL] [Abstract][Full Text] [Related]
43. Prion domain interaction responsible for species discrimination in yeast [PSI+] transmission. Hara H; Nakayashiki T; Crist CG; Nakamura Y Genes Cells; 2003 Dec; 8(12):925-39. PubMed ID: 14750948 [TBL] [Abstract][Full Text] [Related]
44. Relationship between prion propensity and the rates of individual molecular steps of fibril assembly. Wang YQ; Buell AK; Wang XY; Welland ME; Dobson CM; Knowles TP; Perrett S J Biol Chem; 2011 Apr; 286(14):12101-7. PubMed ID: 21233211 [TBL] [Abstract][Full Text] [Related]
45. Mechanism of inhibition of Psi+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. Kochneva-Pervukhova NV; Paushkin SV; Kushnirov VV; Cox BS; Tuite MF; Ter-Avanesyan MD EMBO J; 1998 Oct; 17(19):5805-10. PubMed ID: 9755180 [TBL] [Abstract][Full Text] [Related]
46. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312 [TBL] [Abstract][Full Text] [Related]
53. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Osherovich LZ; Weissman JS Cell; 2001 Jul; 106(2):183-94. PubMed ID: 11511346 [TBL] [Abstract][Full Text] [Related]
54. In vitro propagation of the prion-like state of yeast Sup35 protein. Paushkin SV; Kushnirov VV; Smirnov VN; Ter-Avanesyan MD Science; 1997 Jul; 277(5324):381-3. PubMed ID: 9219697 [TBL] [Abstract][Full Text] [Related]
55. A mutation within the C-terminal domain of Sup35p that affects [PSI+] prion propagation. Kabani M; Cosnier B; Bousset L; Rousset JP; Melki R; Fabret C Mol Microbiol; 2011 Aug; 81(3):640-58. PubMed ID: 21631606 [TBL] [Abstract][Full Text] [Related]
56. A role for the proteasome in the turnover of Sup35p and in [PSI(+) ] prion propagation. Kabani M; Redeker V; Melki R Mol Microbiol; 2014 May; 92(3):507-28. PubMed ID: 24589377 [TBL] [Abstract][Full Text] [Related]
57. Yeast [PSI+] "prions" that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Nakayashiki T; Ebihara K; Bannai H; Nakamura Y Mol Cell; 2001 Jun; 7(6):1121-30. PubMed ID: 11430816 [TBL] [Abstract][Full Text] [Related]
59. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. Paushkin SV; Kushnirov VV; Smirnov VN; Ter-Avanesyan MD EMBO J; 1996 Jun; 15(12):3127-34. PubMed ID: 8670813 [TBL] [Abstract][Full Text] [Related]
60. Rnq1: an epigenetic modifier of protein function in yeast. Sondheimer N; Lindquist S Mol Cell; 2000 Jan; 5(1):163-72. PubMed ID: 10678178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]