These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 26565179)
1. Monte Carlo study of anisotropic scaling generated by disorder. Vasilyev O; Berche B; Dudka M; Holovatch Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042118. PubMed ID: 26565179 [TBL] [Abstract][Full Text] [Related]
2. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
3. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model. da Silva R; Alves N; Drugowich de Felício JR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012131. PubMed ID: 23410307 [TBL] [Abstract][Full Text] [Related]
4. Numerical evidence of hyperscaling violation in wetting transitions of the random-bond Ising model in d=2 dimensions. Albano EV; Luque L; Trobo ML; Binder K Phys Rev E; 2017 Feb; 95(2-1):022801. PubMed ID: 28297842 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional randomly dilute Ising model: Monte Carlo results. Calabrese P; Martín-Mayor V; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036136. PubMed ID: 14524861 [TBL] [Abstract][Full Text] [Related]
6. Universality of a two-dimensional Ising ferromagnetic fluid near the second-order magnetic phase transition. Korneta W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041109. PubMed ID: 11690012 [TBL] [Abstract][Full Text] [Related]
7. Multicriticality of the (2+1) -dimensional gonihedric model: a realization of the (d,m)=(3,2) Lifshitz point. Nishiyama Y Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051116. PubMed ID: 17677031 [TBL] [Abstract][Full Text] [Related]
8. Critical dynamics of the two-dimensional random-bond Potts model with nonequilibrium Monte Carlo simulations. Fan S; Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011122. PubMed ID: 19257016 [TBL] [Abstract][Full Text] [Related]
9. Critical behavior of the three-dimensional Ising model with anisotropic bond randomness at the ferromagnetic-paramagnetic transition line. Papakonstantinou T; Malakis A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012132. PubMed ID: 23410308 [TBL] [Abstract][Full Text] [Related]
10. Universal anisotropic finite-size critical behavior of the two-dimensional Ising model on a strip and of d-dimensional models on films. Kastening B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041105. PubMed ID: 23214527 [TBL] [Abstract][Full Text] [Related]
11. Possibility of Fisher renormalization of the critical exponents in an Ising fluid. Fenz W; Folk R; Mryglod IM; Omelyan IP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061504. PubMed ID: 17677266 [TBL] [Abstract][Full Text] [Related]
12. Determination of the dynamic and static critical exponents of the two-dimensional three-state Potts model using linearly varying temperature. Fan S; Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041141. PubMed ID: 17994970 [TBL] [Abstract][Full Text] [Related]
13. Nonuniversal and anomalous critical behavior of the contact process near an extended defect. Juhász R; Iglói F Phys Rev E; 2018 Jan; 97(1-1):012111. PubMed ID: 29448447 [TBL] [Abstract][Full Text] [Related]
14. Critical behavior and scaling in trapped systems. Campostrini M; Vicari E Phys Rev Lett; 2009 Jun; 102(24):240601. PubMed ID: 19658988 [TBL] [Abstract][Full Text] [Related]
15. Block renormalization study on the nonequilibrium chiral Ising model. Kim M; Park SC; Noh JD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012132. PubMed ID: 25679595 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo investigation of critical properties of the Landau point of a biaxial liquid-crystal system. Ghoshal N; Shabnam S; DasGupta S; Roy SK Phys Rev E; 2016 May; 93(5):052701. PubMed ID: 27300954 [TBL] [Abstract][Full Text] [Related]
17. Non-mean-field behavior of critical wetting transition for short-range forces. Bryk P; Binder K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):030401. PubMed ID: 24125203 [TBL] [Abstract][Full Text] [Related]
18. Anisotropy and universality in finite-size scaling: critical Binder cumulant of a two-dimensional Ising model. Kastening B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):044101. PubMed ID: 23679550 [TBL] [Abstract][Full Text] [Related]
19. Critical behaviour of the Ising ferromagnet confined in quasi-cylindrical pores: a Monte Carlo study. Guisandez LE; Zarragoicoechea GJ; Albano EV J Chem Phys; 2013 Oct; 139(15):154706. PubMed ID: 24160532 [TBL] [Abstract][Full Text] [Related]
20. Strongly anisotropic nonequilibrium phase transition in Ising models with friction. Angst S; Hucht A; Wolf DE Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051120. PubMed ID: 23004716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]