These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26565202)

  • 1. Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods.
    Bertin E; Baskaran A; Chaté H; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042141. PubMed ID: 26565202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-regulation in self-propelled nematic fluids.
    Baskaran A; Marchetti MC
    Eur Phys J E Soft Matter; 2012 Sep; 35(9):95. PubMed ID: 23053844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced diffusion and ordering of self-propelled rods.
    Baskaran A; Marchetti MC
    Phys Rev Lett; 2008 Dec; 101(26):268101. PubMed ID: 19113789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective motion of binary self-propelled particle mixtures.
    Menzel AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear field equations for aligning self-propelled rods.
    Peshkov A; Aranson IS; Bertin E; Chaté H; Ginelli F
    Phys Rev Lett; 2012 Dec; 109(26):268701. PubMed ID: 23368625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods.
    Kuan HS; Blackwell R; Hough LE; Glaser MA; Betterton MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(6):060501. PubMed ID: 26764616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A particle-field approach bridges phase separation and collective motion in active matter.
    Großmann R; Aranson IS; Peruani F
    Nat Commun; 2020 Oct; 11(1):5365. PubMed ID: 33097711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamics of isotropic and liquid crystalline active polymer solutions.
    Ahmadi A; Marchetti MC; Liverpool TB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061913. PubMed ID: 17280102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakdown of Boltzmann-type models for the alignment of self-propelled rods.
    Murphy P; Perepelitsa M; Timofeyev I; Lieber-Kotz M; Islas B; Igoshin OA
    Math Biosci; 2024 Oct; 376():109266. PubMed ID: 39127094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean-field model for nematic alignment of self-propelled rods.
    Perepelitsa M; Timofeyev I; Murphy P; Igoshin OA
    Phys Rev E; 2022 Sep; 106(3-1):034613. PubMed ID: 36266908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the interactions between self-propelled bodies.
    Caussin JB; Bartolo D
    Eur Phys J E Soft Matter; 2014 Jun; 37(6):13. PubMed ID: 24965157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamics of self-propelled hard rods.
    Baskaran A; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011920. PubMed ID: 18351889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized lattice Boltzmann algorithm for the flow of a nematic liquid crystal with variable order parameter.
    Care CM; Halliday I; Good K; Lishchuk SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061703. PubMed ID: 16241240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-induced polar order of active Brownian particles in a harmonic trap.
    Hennes M; Wolff K; Stark H
    Phys Rev Lett; 2014 Jun; 112(23):238104. PubMed ID: 24972231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term.
    Bonelli F; Gonnella G; Tiribocchi A; Marenduzzo D
    Eur Phys J E Soft Matter; 2016 Jan; 39(1):1. PubMed ID: 26769011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tricritical points in a Vicsek model of self-propelled particles with bounded confidence.
    Romensky M; Lobaskin V; Ihle T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063315. PubMed ID: 25615230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.