These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26565280)

  • 1. Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation mediated by curvature-inducing proteins.
    Tourdot RW; Ramakrishnan N; Baumgart T; Radhakrishnan R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042715. PubMed ID: 26565280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers.
    Tourdot RW; Ramakrishnan N; Radhakrishnan R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022717. PubMed ID: 25215768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of Curvature Sensing Behavior of Curvature-Inducing Proteins on Model Wavy Substrates.
    Tourdot RW; Ramakrishnan N; Parihar K; Radhakrishnan R
    J Membr Biol; 2022 Jun; 255(2-3):175-184. PubMed ID: 35333976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study.
    Kessel A; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3687-95. PubMed ID: 14645060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer simulation of free-volume distributions and related structural properties in a model lipid bilayer.
    Xiang TX
    Biophys J; 1993 Sep; 65(3):1108-20. PubMed ID: 8241390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of adhesion domains in stressed and confined membranes.
    Dharan N; Farago O
    Soft Matter; 2015 May; 11(19):3780-5. PubMed ID: 25833123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations.
    Wohlert J; den Otter WK; Edholm O; Briels WJ
    J Chem Phys; 2006 Apr; 124(15):154905. PubMed ID: 16674263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions.
    Reynwar BJ; Illya G; Harmandaris VA; Müller MM; Kremer K; Deserno M
    Nature; 2007 May; 447(7143):461-4. PubMed ID: 17522680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of interleaflet coupling on the morphologies of multicomponent lipid bilayer membranes.
    Funkhouser CM; Mayer M; Solis FJ; Thornton K
    J Chem Phys; 2013 Jan; 138(2):024909. PubMed ID: 23320723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.
    Zhang G; Müller M
    J Chem Phys; 2017 Aug; 147(6):064906. PubMed ID: 28810752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence.
    Soekarjo M; Eisenhawer M; Kuhn A; Vogel H
    Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes.
    Ramakrishnan N; Tourdot RW; Radhakrishnan R
    Int J Adv Eng Sci Appl Math; 2016 Jun; 8(2):88-100. PubMed ID: 27616867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes.
    Fournier JB; Barbetta C
    Phys Rev Lett; 2008 Feb; 100(7):078103. PubMed ID: 18352601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature changes of bilayer membranes studied by computer simulations.
    Yang K; Yuan B; Ma YQ
    J Phys Chem B; 2012 Jun; 116(24):7196-202. PubMed ID: 22646151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
    Lipowsky R
    Faraday Discuss; 2013; 161():305-31; discussion 419-59. PubMed ID: 23805747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-free simulations of fluid membrane bilayers.
    Brannigan G; Brown FL
    J Chem Phys; 2004 Jan; 120(2):1059-71. PubMed ID: 15267943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.
    Kong X; Qin S; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 May; 16(18):8434-40. PubMed ID: 24668218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane sorting via the extracellular matrix.
    Sadeghi S; Vink RL
    Biochim Biophys Acta; 2015 Feb; 1848(2):527-31. PubMed ID: 25450353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes.
    Kopelevich DI
    J Chem Phys; 2013 Oct; 139(13):134906. PubMed ID: 24116584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.