These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26565306)

  • 1. Coherence resonance in a thermoacoustic system.
    Kabiraj L; Steinert R; Saurabh A; Paschereit CO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042909. PubMed ID: 26565306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system.
    Unni VR; Gopalakrishnan EA; Syamkumar KS; Sujith RI; Surovyatkina E; Kurths J
    Chaos; 2019 Mar; 29(3):031102. PubMed ID: 30927835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Input-output system identification of a thermoacoustic oscillator near a Hopf bifurcation using only fixed-point data.
    Lee M; Guan Y; Gupta V; Li LKB
    Phys Rev E; 2020 Jan; 101(1-1):013102. PubMed ID: 32069669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode.
    Guan Y; Li LKB; Ahn B; Kim KT
    Chaos; 2019 May; 29(5):053124. PubMed ID: 31154771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of background noises on nonlinear dynamics of a modelled thermoacoustic combustor.
    Li X; Zhao D; Li X
    J Acoust Soc Am; 2018 Jan; 143(1):60. PubMed ID: 29390790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems.
    Li X; Zhao D; Shi B
    J Acoust Soc Am; 2019 Feb; 145(2):692. PubMed ID: 30823803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: theory versus experiment.
    Semenov V; Feoktistov A; Vadivasova T; Schöll E; Zakharova A
    Chaos; 2015 Mar; 25(3):033111. PubMed ID: 25833433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On noise induced Poincaré-Andronov-Hopf bifurcation.
    Samanta HS; Bhattacharjee JK; Bhattacharyay A; Chakraborty S
    Chaos; 2014 Dec; 24(4):043122. PubMed ID: 25554042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experiments on coherence resonance: noisy precursors to Hopf bifurcations.
    Kiss IZ; Hudson JL; Escalera Santos GJ; Parmananda P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035201. PubMed ID: 12689121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle.
    Muratov CB; Vanden-Eijnden E
    Chaos; 2008 Mar; 18(1):015111. PubMed ID: 18377092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of thermoacoustic combustion oscillations in a swirl-stabilized turbulent combustor.
    Kurosaka T; Masuda S; Gotoda H
    Chaos; 2021 Jul; 31(7):073121. PubMed ID: 34340326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of noise amplification during the transition to amplitude death in coupled thermoacoustic oscillators.
    Thomas N; Mondal S; Pawar SA; Sujith RI
    Chaos; 2018 Sep; 28(9):093116. PubMed ID: 30278635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor.
    Godavarthi V; Pawar SA; Unni VR; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Nov; 28(11):113111. PubMed ID: 30501211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutual synchronization of two flame-driven thermoacoustic oscillators: Dissipative and time-delayed coupling effects.
    Moon K; Guan Y; Li LKB; Kim KT
    Chaos; 2020 Feb; 30(2):023110. PubMed ID: 32113251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor.
    Unni VR; Krishnan A; Manikandan R; George NB; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Jun; 28(6):063125. PubMed ID: 29960406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.