These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 26565329)
1. Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field. Lebon GS; Pericleous K; Tzanakis I; Eskin DG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043004. PubMed ID: 26565329 [TBL] [Abstract][Full Text] [Related]
2. Frequency spectrum of the noise emitted by two interacting cavitation bubbles in strong acoustic fields. Jiang L; Liu F; Chen H; Wang J; Chen D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036312. PubMed ID: 22587185 [TBL] [Abstract][Full Text] [Related]
3. Study on hydrogen removal of AZ91 alloys using ultrasonic argon degassing process. Liu X; Zhang Z; Hu W; Le Q; Bao L; Cui J; Jiang J Ultrason Sonochem; 2015 Sep; 26():73-80. PubMed ID: 25649834 [TBL] [Abstract][Full Text] [Related]
4. Investigations on dynamics of interacting cavitation bubbles in strong acoustic fields. Jiang L; Ge H; Liu F; Chen D Ultrason Sonochem; 2017 Jan; 34():90-97. PubMed ID: 27773319 [TBL] [Abstract][Full Text] [Related]
5. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model. Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680 [TBL] [Abstract][Full Text] [Related]
6. Effect of Ultrasonic-Assisted Casting on the Hydrogen and Lithium Content of Al-Li Alloy. Hu Y; Jiang R; Li X; Hu R Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161026 [TBL] [Abstract][Full Text] [Related]
7. Characterization of acoustic cavitation in water and molten aluminum alloy. Komarov S; Oda K; Ishiwata Y; Dezhkunov N Ultrason Sonochem; 2013 Mar; 20(2):754-61. PubMed ID: 23141190 [TBL] [Abstract][Full Text] [Related]
8. An overview and critical assessment of the mechanisms of microstructural refinement during ultrasonic solidification of metals. Balasubramani N; Venezuela J; Yang N; Wang G; StJohn D; Dargusch M Ultrason Sonochem; 2022 Sep; 89():106151. PubMed ID: 36067645 [TBL] [Abstract][Full Text] [Related]
9. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process. Xuan Y; Nastac L Ultrasonics; 2018 Feb; 83():94-102. PubMed ID: 28693864 [TBL] [Abstract][Full Text] [Related]
10. The role of ultrasound in hydrogen removal and microstructure refinement by ultrasonic argon degassing process. Liu X; Zhang C; Zhang Z; Xue J; Le Q Ultrason Sonochem; 2017 Sep; 38():455-462. PubMed ID: 28633847 [TBL] [Abstract][Full Text] [Related]
11. In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water. Priyadarshi A; Khavari M; Bin Shahrani S; Subroto T; Yusuf LA; Conte M; Prentice P; Pericleous K; Eskin D; Tzanakis I Ultrason Sonochem; 2021 Dec; 80():105820. PubMed ID: 34763212 [TBL] [Abstract][Full Text] [Related]
12. The characterization of acoustic cavitation bubbles - an overview. Ashokkumar M Ultrason Sonochem; 2011 Jul; 18(4):864-72. PubMed ID: 21172736 [TBL] [Abstract][Full Text] [Related]
13. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning. Kang BK; Kim MS; Park JG Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613 [TBL] [Abstract][Full Text] [Related]
14. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178 [TBL] [Abstract][Full Text] [Related]
15. A two-dimensional nonlinear model for the generation of stable cavitation bubbles. Vanhille C Ultrason Sonochem; 2016 Jul; 31():631-6. PubMed ID: 26964990 [TBL] [Abstract][Full Text] [Related]
16. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
17. Characterization of acoustic cavitation bubbles in different sound fields. Brotchie A; Grieser F; Ashokkumar M J Phys Chem B; 2010 Sep; 114(34):11010-6. PubMed ID: 20698516 [TBL] [Abstract][Full Text] [Related]
18. A high-temperature acoustic field measurement and analysis system for determining cavitation intensity in ultrasonically solidified metallic alloys. Xu N; Yu Y; Zhai W; Wang J; Wei B Ultrason Sonochem; 2023 Mar; 94():106343. PubMed ID: 36858007 [TBL] [Abstract][Full Text] [Related]
19. Fundamental studies of ultrasonic melt processing. Eskin DG; Tzanakis I; Wang F; Lebon GSB; Subroto T; Pericleous K; Mi J Ultrason Sonochem; 2019 Apr; 52():455-467. PubMed ID: 30594518 [TBL] [Abstract][Full Text] [Related]
20. A method for predicting the number of active bubbles in sonochemical reactors. Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]