These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26565353)

  • 1. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions.
    Hu SX; Collins LA; Goncharov VN; Kress JD; McCrory RL; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043104. PubMed ID: 26565353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling and degeneracy effects in inertial confinement fusion implosions.
    Hu SX; Militzer B; Goncharov VN; Skupsky S
    Phys Rev Lett; 2010 Jun; 104(23):235003. PubMed ID: 20867248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations.
    Hu SX; Gao R; Ding Y; Collins LA; Kress JD
    Phys Rev E; 2017 Apr; 95(4-1):043210. PubMed ID: 28505720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles equation-of-state table of beryllium based on density-functional theory calculations.
    Ding YH; Hu SX
    Phys Plasmas; 2017 Jun; 24(6):062702. PubMed ID: 28713214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of warm dense polystyrene plasmas along the principal Hugoniot.
    Hu SX; Boehly TR; Collins LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063104. PubMed ID: 25019901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.
    Hu SX; Collins LA; Goncharov VN; Boehly TR; Epstein R; McCrory RL; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033111. PubMed ID: 25314551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles equation of state of CHON resin for inertial confinement fusion applications.
    Zhang S; Karasiev VV; Shaffer N; Mihaylov DI; Nichols K; Paul R; Goshadze RMN; Ghosh M; Hinz J; Epstein R; Goedecker S; Hu SX
    Phys Rev E; 2022 Oct; 106(4-2):045207. PubMed ID: 36397594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.
    Hu SX; Collins LA; Boehly TR; Kress JD; Goncharov VN; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043105. PubMed ID: 24827353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.
    Xu B; Hu SX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016408. PubMed ID: 21867323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation along the principal Hugoniot of the Laser Mégajoule ablator material.
    Colin-Lalu P; Recoules V; Salin G; Plisson T; Brambrink E; Vinci T; Bolis R; Huser G
    Phys Rev E; 2016 Aug; 94(2-1):023204. PubMed ID: 27627404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and ab initio investigations of microscopic properties of laser-shocked Ge-doped ablator.
    Huser G; Recoules V; Ozaki N; Sano T; Sakawa Y; Salin G; Albertazzi B; Miyanishi K; Kodama R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063108. PubMed ID: 26764839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in inertial confinement fusion implosions upon using an ab initio multiphase DT equation of state.
    Caillabet L; Canaud B; Salin G; Mazevet S; Loubeyre P
    Phys Rev Lett; 2011 Sep; 107(11):115004. PubMed ID: 22026681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized measurable ignition criterion for inertial confinement fusion.
    Chang PY; Betti R; Spears BK; Anderson KS; Edwards J; Fatenejad M; Lindl JD; McCrory RL; Nora R; Shvarts D
    Phys Rev Lett; 2010 Apr; 104(13):135002. PubMed ID: 20481889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implosion experiments using glass ablators for direct-drive inertial confinement fusion.
    Smalyuk VA; Betti R; Delettrez JA; Glebov VY; Meyerhofer DD; Radha PB; Regan SP; Sangster TC; Sanz J; Seka W; Stoeckl C; Yaakobi B; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2010 Apr; 104(16):165002. PubMed ID: 20482057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles equation of state database for warm dense matter computation.
    Militzer B; González-Cataldo F; Zhang S; Driver KP; Soubiran F
    Phys Rev E; 2021 Jan; 103(1-1):013203. PubMed ID: 33601631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.
    Park HS; Hurricane OA; Callahan DA; Casey DT; Dewald EL; Dittrich TR; Döppner T; Hinkel DE; Berzak Hopkins LF; Le Pape S; Ma T; Patel PK; Remington BA; Robey HF; Salmonson JD; Kline JL
    Phys Rev Lett; 2014 Feb; 112(5):055001. PubMed ID: 24580603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of oxygen on the 300-K isotherm of Laser Megajoule ablator using ab initio simulation.
    Colin-Lalu P; Recoules V; Salin G; Huser G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053104. PubMed ID: 26651799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility.
    Olson RE; Leeper RJ; Kline JL; Zylstra AB; Yi SA; Biener J; Braun T; Kozioziemski BJ; Sater JD; Bradley PA; Peterson RR; Haines BM; Yin L; Berzak Hopkins LF; Meezan NB; Walters C; Biener MM; Kong C; Crippen JW; Kyrala GA; Shah RC; Herrmann HW; Wilson DC; Hamza AV; Nikroo A; Batha SH
    Phys Rev Lett; 2016 Dec; 117(24):245001. PubMed ID: 28009190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions.
    Lees A; Betti R; Knauer JP; Gopalaswamy V; Patel D; Woo KM; Anderson KS; Campbell EM; Cao D; Carroll-Nellenback J; Epstein R; Forrest C; Goncharov VN; Harding DR; Hu SX; Igumenshchev IV; Janezic RT; Mannion OM; Radha PB; Regan SP; Shvydky A; Shah RC; Shmayda WT; Stoeckl C; Theobald W; Thomas C
    Phys Rev Lett; 2021 Sep; 127(10):105001. PubMed ID: 34533333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA.
    Stoeckl C; Boni R; Ehrne F; Forrest CJ; Glebov VY; Katz J; Lonobile DJ; Magoon J; Regan SP; Shoup MJ; Sorce A; Sorce C; Sangster TC; Weiner D
    Rev Sci Instrum; 2016 May; 87(5):053501. PubMed ID: 27250417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.