These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 26565451)

  • 1. Gravitational Waves from a Dark Phase Transition.
    Schwaller P
    Phys Rev Lett; 2015 Oct; 115(18):181101. PubMed ID: 26565451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mirror QCD phase transition as the origin of the nanohertz Stochastic Gravitational-Wave Background.
    Zu L; Zhang C; Li YY; Gu Y; Tsai YS; Fan YZ
    Sci Bull (Beijing); 2024 Mar; 69(6):741-746. PubMed ID: 38320899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of early-universe gravitational-wave signatures and fundamental physics.
    Caldwell R; Cui Y; Guo HK; Mandic V; Mariotti A; No JM; Ramsey-Musolf MJ; Sakellariadou M; Sinha K; Wang LT; White G; Zhao Y; An H; Bian L; Caprini C; Clesse S; Cline JM; Cusin G; Fornal B; Jinno R; Laurent B; Levi N; Lyu KF; Martinez M; Miller AL; Redigolo D; Scarlata C; Sevrin A; Haghi BSE; Shu J; Siemens X; Steer DA; Sundrum R; Tamarit C; Weir DJ; Xie KP; Yang FW; Zhou S
    Gen Relativ Gravit; 2022; 54(12):156. PubMed ID: 36465478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of nano-Hertz gravitational waves on electroweak phase transition in the singlet dark matter model.
    Xiao Y; Yang JM; Zhang Y
    Sci Bull (Beijing); 2023 Dec; 68(24):3158-3164. PubMed ID: 37996353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array.
    Xue X; Bian L; Shu J; Yuan Q; Zhu X; Bhat NDR; Dai S; Feng Y; Goncharov B; Hobbs G; Howard E; Manchester RN; Russell CJ; Reardon DJ; Shannon RM; Spiewak R; Thyagarajan N; Wang J
    Phys Rev Lett; 2021 Dec; 127(25):251303. PubMed ID: 35029430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detectability of Gravitational Waves from High-Redshift Binaries.
    Rosado PA; Lasky PD; Thrane E; Zhu X; Mandel I; Sesana A
    Phys Rev Lett; 2016 Mar; 116(10):101102. PubMed ID: 27015470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive graviton as a testable cold-dark-matter candidate.
    Dubovsky SL; Tinyakov PG; Tkachev II
    Phys Rev Lett; 2005 May; 94(18):181102. PubMed ID: 15904353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations.
    Cai YF; He XC; Ma XH; Yan SF; Yuan GW
    Sci Bull (Beijing); 2023 Dec; 68(23):2929-2935. PubMed ID: 37951785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact scale-invariant background of gravitational waves from cosmic defects.
    Figueroa DG; Hindmarsh M; Urrestilla J
    Phys Rev Lett; 2013 Mar; 110(10):101302. PubMed ID: 23521248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supermassive Black Holes, Ultralight Dark Matter, and Gravitational Waves from a First Order Phase Transition.
    Davoudiasl H; Denton PB; Gehrlein J
    Phys Rev Lett; 2022 Feb; 128(8):081101. PubMed ID: 35275682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter.
    Badurina L; Buchmueller O; Ellis J; Lewicki M; McCabe C; Vaskonen V
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210060. PubMed ID: 34923845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravitational Wave Symphony from Oscillating Spectator Scalar Fields.
    Cui Y; Saha P; Sfakianakis EI
    Phys Rev Lett; 2024 Jul; 133(2):021004. PubMed ID: 39073926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gravitational waves from the sound of a first order phase transition.
    Hindmarsh M; Huber SJ; Rummukainen K; Weir DJ
    Phys Rev Lett; 2014 Jan; 112(4):041301. PubMed ID: 24580433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe.
    Iso S; Serpico PD; Shimada K
    Phys Rev Lett; 2017 Oct; 119(14):141301. PubMed ID: 29053328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.
    Tinto M
    Phys Rev Lett; 2011 May; 106(19):191101. PubMed ID: 21668135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearly scale invariant spectrum of gravitational radiation from global phase transitions.
    Jones-Smith K; Krauss LM; Mathur H
    Phys Rev Lett; 2008 Apr; 100(13):131302. PubMed ID: 18517931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike.
    Eda K; Itoh Y; Kuroyanagi S; Silk J
    Phys Rev Lett; 2013 May; 110(22):221101. PubMed ID: 23767709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravitational waves from a first-order electroweak phase transition: a brief review.
    Weir DJ
    Philos Trans A Math Phys Eng Sci; 2018 Mar; 376(2114):. PubMed ID: 29358351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravitational Waves from Oscillons after Inflation.
    Antusch S; Cefalà F; Orani S
    Phys Rev Lett; 2017 Jan; 118(1):011303. PubMed ID: 28106457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction.
    Rees MJ
    Philos Trans A Math Phys Eng Sci; 2003 Nov; 361(1812):2427-34. PubMed ID: 14667310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.