These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26565485)

  • 1. Effect of Structural Relaxation on the Electronic Structure of Graphene on Hexagonal Boron Nitride.
    Slotman GJ; van Wijk MM; Zhao PL; Fasolino A; Katsnelson MI; Yuan S
    Phys Rev Lett; 2015 Oct; 115(18):186801. PubMed ID: 26565485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological Winding Number Change and Broken Inversion Symmetry in a Hofstadter's Butterfly.
    Wang P; Cheng B; Martynov O; Miao T; Jing L; Taniguchi T; Watanabe K; Aji V; Lau CN; Bockrath M
    Nano Lett; 2015 Oct; 15(10):6395-9. PubMed ID: 26401645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Hexagonal Boron Nitride on Electronic Structure of Graphene.
    Liu J; Luo C; Lu H; Huang Z; Long G; Peng X
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hofstadter Butterfly and Many-Body Effects in Epitaxial Graphene Superlattice.
    Yang W; Lu X; Chen G; Wu S; Xie G; Cheng M; Wang D; Yang R; Shi D; Watanabe K; Taniguchi T; Voisin C; Plaçais B; Zhang Y; Zhang G
    Nano Lett; 2016 Apr; 16(4):2387-92. PubMed ID: 26950258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of Tertiary Dirac Points in Graphene Moiré Superlattices.
    Chen G; Sui M; Wang D; Wang S; Jung J; Moon P; Adam S; Watanabe K; Taniguchi T; Zhou S; Koshino M; Zhang G; Zhang Y
    Nano Lett; 2017 Jun; 17(6):3576-3581. PubMed ID: 28475836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double Moiré with a Twist: Supermoiré in Encapsulated Graphene.
    Anđelković M; Milovanović SP; Covaci L; Peeters FM
    Nano Lett; 2020 Feb; 20(2):979-988. PubMed ID: 31961161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure.
    Hunt B; Sanchez-Yamagishi JD; Young AF; Yankowitz M; LeRoy BJ; Watanabe K; Taniguchi T; Moon P; Koshino M; Jarillo-Herrero P; Ashoori RC
    Science; 2013 Jun; 340(6139):1427-30. PubMed ID: 23686343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge transport through one-dimensional Moiré crystals.
    Bonnet R; Lherbier A; Barraud C; Della Rocca ML; Lafarge P; Charlier JC
    Sci Rep; 2016 Jan; 6():19701. PubMed ID: 26786067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice match and lattice mismatch models of graphene on hexagonal boron nitride from first principles.
    Zhao X; Li L; Zhao M
    J Phys Condens Matter; 2014 Mar; 26(9):095002. PubMed ID: 24521541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of Local Commensurate State with Lattice Match of Graphene on Hexagonal Boron Nitride.
    Kim NY; Jeong HY; Kim JH; Kim G; Shin HS; Lee Z
    ACS Nano; 2017 Jul; 11(7):7084-7090. PubMed ID: 28613831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene on hexagonal boron nitride.
    Yankowitz M; Xue J; LeRoy BJ
    J Phys Condens Matter; 2014 Jul; 26(30):303201. PubMed ID: 24994551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of band gaps in graphene on hexagonal boron nitride.
    Jung J; DaSilva AM; MacDonald AH; Adam S
    Nat Commun; 2015 Feb; 6():6308. PubMed ID: 25695638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity.
    Diez M; Dahlhaus JP; Wimmer M; Beenakker CW
    Phys Rev Lett; 2014 May; 112(19):196602. PubMed ID: 24877956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride.
    DaSilva AM; Jung J; MacDonald AH
    Phys Rev Lett; 2016 Jul; 117(3):036802. PubMed ID: 27472128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride.
    Lu J; Gomes LC; Nunes RW; Castro Neto AH; Loh KP
    Nano Lett; 2014 Sep; 14(9):5133-9. PubMed ID: 25083603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice.
    Wang XM; Lu SS
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3025-8. PubMed ID: 26353530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the influence of point defects on the structural and electronic properties of graphene-like sheets: a molecular simulation study.
    Chigo Anota E; Escobedo-Morales A; Salazar Villanueva M; Vázquez-Cuchillo O; Rubio Rosas E
    J Mol Model; 2013 Feb; 19(2):839-46. PubMed ID: 23065142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride.
    Xue J; Sanchez-Yamagishi J; Bulmash D; Jacquod P; Deshpande A; Watanabe K; Taniguchi T; Jarillo-Herrero P; LeRoy BJ
    Nat Mater; 2011 Apr; 10(4):282-5. PubMed ID: 21317900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.