These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26565506)

  • 1. Self-Sustained Density Oscillations of Swimming Bacteria Confined in Microchambers.
    Paoluzzi M; Di Leonardo R; Angelani L
    Phys Rev Lett; 2015 Oct; 115(18):188303. PubMed ID: 26565506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming.
    Nash RW; Adhikari R; Tailleur J; Cates ME
    Phys Rev Lett; 2010 Jun; 104(25):258101. PubMed ID: 20867416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous population oscillation of confined active granular particles.
    Li W; Li L; Shi Q; Yang M; Zheng N
    Soft Matter; 2022 Jul; 18(29):5459-5464. PubMed ID: 35822840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined swimming of bio-inspired microrobots in rectangular channels.
    Temel FZ; Yesilyurt S
    Bioinspir Biomim; 2015 Feb; 10(1):016015. PubMed ID: 25642947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective run-and-tumble dynamics of bacteria baths.
    Paoluzzi M; Di Leonardo R; Angelani L
    J Phys Condens Matter; 2013 Oct; 25(41):415102. PubMed ID: 23999470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Run-and-tumble kinematics of Enterobacter Sp. SM3.
    Johnson S; Freedman B; Tang JX
    Phys Rev E; 2024 Jun; 109(6-1):064402. PubMed ID: 39021001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular motion of asymmetric self-propelling particles.
    Kümmel F; ten Hagen B; Wittkowski R; Buttinoni I; Eichhorn R; Volpe G; Löwen H; Bechinger C
    Phys Rev Lett; 2013 May; 110(19):198302. PubMed ID: 23705745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rectification of twitching bacteria through narrow channels: A numerical simulations study.
    Bisht K; Marathe R
    Phys Rev E; 2020 Apr; 101(4-1):042409. PubMed ID: 32422849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical mechanics of interacting run-and-tumble bacteria.
    Tailleur J; Cates ME
    Phys Rev Lett; 2008 May; 100(21):218103. PubMed ID: 18518641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General aspects of hydrodynamic interactions between three-sphere low-Reynolds-number swimmers.
    Farzin M; Ronasi K; Najafi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061914. PubMed ID: 23005134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity Condensation for Magnetotactic Bacteria.
    Rupprecht JF; Waisbord N; Ybert C; Cottin-Bizonne C; Bocquet L
    Phys Rev Lett; 2016 Apr; 116(16):168101. PubMed ID: 27152825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microscale model of bacterial swimming, chemotaxis and substrate transport.
    Dillon R; Fauci L; Gaver D
    J Theor Biol; 1995 Dec; 177(4):325-40. PubMed ID: 8871472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell morphology governs directional control in swimming bacteria.
    Guadayol Ò; Thornton KL; Humphries S
    Sci Rep; 2017 May; 7(1):2061. PubMed ID: 28515428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of motility on bacterial accumulation in a microporous channel.
    Lee M; Lohrmann C; Szuttor K; Auradou H; Holm C
    Soft Matter; 2021 Jan; 17(4):893-902. PubMed ID: 33241837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective interactions between colloidal particles suspended in a bath of swimming cells.
    Angelani L; Maggi C; Bernardini ML; Rizzo A; Di Leonardo R
    Phys Rev Lett; 2011 Sep; 107(13):138302. PubMed ID: 22026908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swimming of a model ciliate near an air-liquid interface.
    Wang S; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063010. PubMed ID: 23848775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic resonance on the transverse displacement of swimmers in an oscillatory shear flow.
    Guzmán-Lastra F; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):037301. PubMed ID: 23031055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swimming trajectories of a three-sphere microswimmer near a wall.
    Daddi-Moussa-Ider A; Lisicki M; Hoell C; Löwen H
    J Chem Phys; 2018 Apr; 148(13):134904. PubMed ID: 29626882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.