BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 26565564)

  • 1. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.
    Wray D; Ramaswamy HS
    J Food Sci; 2015 Dec; 80(12):E2792-802. PubMed ID: 26565564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention of antioxidant capacity of vacuum microwave dried cranberry.
    Leusink GJ; Kitts DD; Yaghmaee P; Durance T
    J Food Sci; 2010 Apr; 75(3):C311-6. PubMed ID: 20492285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of osmotic solutions in microwave-osmotic dehydration: product quality and potential for creation of a novel product.
    Wray D; Ramaswamy HS
    J Sci Food Agric; 2016 Aug; 96(10):3515-23. PubMed ID: 26593746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drying Kinetics and Quality of Dehydrated Cranberries Pretreated by Traditional and Innovative Techniques.
    Wiktor A; Nowacka M; Anuszewska A; Rybak K; Dadan M; Witrowa-Rajchert D
    J Food Sci; 2019 Jul; 84(7):1820-1828. PubMed ID: 31206662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.
    Wojdyło A; Figiel A; Oszmiański J
    J Agric Food Chem; 2009 Feb; 57(4):1337-43. PubMed ID: 19170638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass transfer during osmotic dehydration and its effect on anthocyanin retention of microwave vacuum-dried blackberries.
    Song C; Ma X; Li Z; Wu T; Raghavan GV; Chen H
    J Sci Food Agric; 2020 Jan; 100(1):102-109. PubMed ID: 31436308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods.
    Nemzer B; Vargas L; Xia X; Sintara M; Feng H
    Food Chem; 2018 Oct; 262():242-250. PubMed ID: 29751916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.
    Zielinska M; Michalska A
    Food Chem; 2016 Dec; 212():671-80. PubMed ID: 27374583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying.
    Yan H; Kerr WL
    J Sci Food Agric; 2013 Apr; 93(6):1499-504. PubMed ID: 23080413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.
    Jiang H; Zhang M; Mujumdar AS; Lim RX
    J Sci Food Agric; 2014 Jul; 94(9):1827-34. PubMed ID: 24526431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in unfrozen water content and dielectric properties during pulse vacuum osmotic dehydration to improve microwave freeze-drying characteristics of Chinese yam.
    Li L; Zhang M; Song X; Wang W; Bhandari B
    J Sci Food Agric; 2019 Nov; 99(14):6572-6581. PubMed ID: 31325328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.
    Figiel A; Michalska A
    Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28042845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drying kinetics and quality characteristics of microwave-vacuum dried Saskatoon berries.
    Meda V; Gupta M; Opoku A
    J Microw Power Electromagn Energy; 2008; 42(4):4-12. PubMed ID: 19227059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour.
    Lenaerts S; Van Der Borght M; Callens A; Van Campenhout L
    Food Chem; 2018 Jul; 254():129-136. PubMed ID: 29548432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxycinnamic Acids and Carotenoids of Dried Loquat Fruit cv. 'Algar' Affected by Freeze-, Convective-, Vacuum-Microwave- and Combined-Drying Methods.
    López-Lluch DB; Cano-Lamadrid M; Hernández F; Zimmer A; Lech K; Figiel A; Carbonell-Barrachina ÁA; Wojdyło A
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32785157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Filtrated Osmotic Solution Based on Concentrated Chokeberry Juice and Mint Extract on the Drying Kinetics, Energy Consumption and Physicochemical Properties of Dried Apples.
    Masztalerz K; Łyczko J; Lech K
    Molecules; 2021 May; 26(11):. PubMed ID: 34071647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.
    Tian Y; Zhao Y; Huang J; Zeng H; Zheng B
    Food Chem; 2016 Apr; 197(Pt A):714-22. PubMed ID: 26617008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drying and color characteristics of coriander foliage using convective thin-layer and microwave drying.
    Shaw M; Meda V; Tabil L; Opoku A
    J Microw Power Electromagn Energy; 2007; 41(2):59-68. PubMed ID: 18161423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Ultrasound and Cultivar Selection on the Biocompounds and Physicochemical Characteristics of Dried Blueberry (Vaccinium corymbosum L.) Snacks.
    Celejewska K; Mieszczakowska-Frąc M; Konopacka D; Krupa T
    J Food Sci; 2018 Sep; 83(9):2305-2316. PubMed ID: 30199106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).
    Šumić Z; Vakula A; Tepić A; Čakarević J; Vitas J; Pavlić B
    Food Chem; 2016 Jul; 203():465-475. PubMed ID: 26948639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.