These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26565826)

  • 1. Scattering analysis for random antireflective structures on fused silica in the ultraviolet.
    Zhao J; Qi H; Wang H; He H; Zhang W
    Opt Lett; 2015 Nov; 40(22):5168-71. PubMed ID: 26565826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching.
    Ye X; Jiang X; Huang J; Geng F; Sun L; Zu X; Wu W; Zheng W
    Sci Rep; 2015 Aug; 5():13023. PubMed ID: 26268896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica.
    Wu J; Ye X; Sun L; Huang J; Wen J; Geng F; Zeng Y; Li Q; Yi Z; Jiang X; Zhang K
    Opt Express; 2018 Jan; 26(2):1361-1374. PubMed ID: 29402011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma-Induced, Self-Masking, One-Step Approach to an Ultrabroadband Antireflective and Superhydrophilic Subwavelength Nanostructured Fused Silica Surface.
    Ye X; Shao T; Sun L; Wu J; Wang F; He J; Jiang X; Wu WD; Zheng W
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13851-13859. PubMed ID: 29617569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antireflective glass nanoholes on optical lenses.
    Lee Y; Bae SI; Eom J; Suh HC; Jeong KH
    Opt Express; 2018 May; 26(11):14786-14791. PubMed ID: 29877414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations.
    Lehr D; Helgert M; Sundermann M; Morhard C; Pacholski C; Spatz JP; Brunner R
    Opt Express; 2010 Nov; 18(23):23878-90. PubMed ID: 21164733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces.
    Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly transparent sapphire micro-grating structures with large diffuse light scattering.
    Ko YH; Yu JS
    Opt Express; 2011 Aug; 19(16):15574-83. PubMed ID: 21934920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antireflection Structures for VIS and NIR on Arbitrarily Shaped Fused Silica Substrates with Colloidal Polystyrene Nanosphere Lithography.
    Schmelz D; Jia G; Käsebier T; Plentz J; Zeitner UD
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers.
    Jang SJ; Song YM; Yu JS; Yeo CI; Lee YT
    Opt Lett; 2011 Jan; 36(2):253-5. PubMed ID: 21263517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband and omnidirectional light harvesting enhancement of fluorescent SiC.
    Ou Y; Jokubavicius V; Hens P; Kaiser M; Wellmann P; Yakimova R; Syväjärvi M; Ou H
    Opt Express; 2012 Mar; 20(7):7575-9. PubMed ID: 22453436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam.
    Zhang F; Duan J; Zhou X; Wang C
    Opt Express; 2018 Dec; 26(26):34016-34030. PubMed ID: 30650832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications.
    Gonzalez FL; Morse DE; Gordon MJ
    Opt Lett; 2014 Jan; 39(1):13-6. PubMed ID: 24365809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Straightforward Approach to Antifogging, Antireflective, Dual-Function, Nanostructured Coatings.
    Wang Y; Ye X; Li B; He J; Zheng W
    Langmuir; 2019 Sep; 35(35):11351-11357. PubMed ID: 31436095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method.
    Shao T; Tang F; Sun L; Ye X; He J; Yang L; Zheng W
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of highly efficient transmission gratings with deep etched triangular grooves.
    Jing X; Zhang J; Jin S; Liang P; Tian Y
    Appl Opt; 2012 Nov; 51(33):7920-33. PubMed ID: 23207302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antireflective property of thin film a-Si solar cell structures with graded refractive index structure.
    Jang SJ; Song YM; Yeo CI; Park CY; Yu JS; Lee YT
    Opt Express; 2011 Mar; 19 Suppl 2():A108-17. PubMed ID: 21445212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light scattering characterization of single-layer nanoporous SiO
    Sekman Y; Felde N; Ghazaryan L; Szeghalmi A; Schröder S
    Appl Opt; 2020 Feb; 59(5):A143-A149. PubMed ID: 32225366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antireflective SiC Surface Fabricated by Scalable Self-Assembled Nanopatterning.
    Ou Y; Fadil A; Ou H
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.