These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26565878)

  • 1. Bistability in buckled dome microcavities.
    Bitarafan MH; Ramp H; Potts C; Allen TW; Davis JP; DeCorby RG
    Opt Lett; 2015 Nov; 40(22):5375-8. PubMed ID: 26565878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure sensing with high-finesse monolithic buckled-dome microcavities.
    Al-Sumaidae S; Bu L; Hornig GJ; Bitarafan MH; DeCorby RG
    Appl Opt; 2021 Oct; 60(29):9219-9224. PubMed ID: 34624005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-finesse cavities fabricated by buckling self-assembly of a-Si/SiO2 multilayers.
    Allen TW; Silverstone J; Ponnampalam N; Olsen T; Meldrum A; DeCorby RG
    Opt Express; 2011 Sep; 19(20):18903-9. PubMed ID: 21996832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
    Bitarafan MH; DeCorby RG
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of pulse signal restoration by stochastic resonance in a buckled microcavity.
    Sun H; Liu H; Sun Q; Huang N; Wang Z; Han J
    Appl Opt; 2016 Apr; 55(12):3351-5. PubMed ID: 27140110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperativity enhancement in buckled-dome microcavities with omnidirectional claddings.
    Al-Sumaidae S; Bitarafan MH; Potts CA; Davis JP; DeCorby RG
    Opt Express; 2018 Apr; 26(9):11201-11212. PubMed ID: 29716044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound sensing at thermomechanical limits with optomechanical buckled-dome microcavities.
    Hornig GJ; Scheuer KG; Dew EB; Zemp R; DeCorby RG
    Opt Express; 2022 Aug; 30(18):33083-33096. PubMed ID: 36242356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid infiltration of monolithic open-access Fabry-Perot microcavities.
    Maldaner J; Al-Sumaidae S; Hornig GJ; LeBlanc LJ; DeCorby RG
    Appl Opt; 2020 Aug; 59(23):7125-7130. PubMed ID: 32788809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced nonlinear optics in photonic-crystal microcavities.
    Bravo-Abad J; Rodriguez A; Bermel P; Johnson SG; Joannopoulos JD; Soljacic M
    Opt Express; 2007 Nov; 15(24):16161-76. PubMed ID: 19550904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical bistability involving photonic crystal microcavities and Fano line shapes.
    Cowan AR; Young JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046606. PubMed ID: 14683064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 multilayers.
    Epp E; Ponnampalam N; Newman W; Drobot B; McMullin JN; Meldrum AF; DeCorby RG
    Opt Express; 2010 Nov; 18(24):24917-25. PubMed ID: 21164836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling.
    Epp E; Ponnampalam N; McMullin JN; Decorby RG
    Opt Express; 2009 Sep; 17(20):17369-75. PubMed ID: 19907522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-intensity optical bistability in an active Fabry-Perot mirror induced by input-phase-insensitive parametric downconversion.
    Bosco A; Fazio E; Bertolotti M; Cojocaru C; Martorell J
    Appl Opt; 2002 May; 41(15):2935-43. PubMed ID: 12027182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithically integrated membrane-in-the-middle cavity optomechanical systems.
    Hornig GJ; Al-Sumaidae S; Maldaner J; Bu L; DeCorby RG
    Opt Express; 2020 Sep; 28(19):28113-28125. PubMed ID: 32988089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level.
    An K; Sones BA; Fang-Yen C; Dasari RR; Feld MS
    Opt Lett; 1997 Sep; 22(18):1433-5. PubMed ID: 18188261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical bistability in asymmetric Fabry-Perot laser-diode amplifiers.
    Mitchell NF; O'Gorman J; Hegarty J; Connolly JC
    Opt Lett; 1994 Feb; 19(4):269-71. PubMed ID: 19829613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector.
    Corcoran CJ; Kang S; Li L; Guo X; Chanda D; Nuzzo RG
    ACS Appl Mater Interfaces; 2013 May; 5(10):4239-46. PubMed ID: 23586736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities.
    Bulgakov E; Sadreev A
    J Phys Condens Matter; 2011 Aug; 23(31):315303. PubMed ID: 21772065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing.
    Favero FC; Araujo L; Bouwmans G; Finazzi V; Villatoro J; Pruneri V
    Opt Express; 2012 Mar; 20(7):7112-8. PubMed ID: 22453393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoelectromechanical-systems-controlled bistability of double-coupled photonic crystal cavities.
    Tian F; Zhou G; Du Y; Chau FS; Deng J; Teo SL; Akkipeddi R
    Opt Lett; 2013 Sep; 38(17):3394-7. PubMed ID: 23988967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.